Foam-formed cellulose biocomposites are a promising technology for developing lightweight and sustainable packaging materials. In this work, we produce and characterize biocomposite foams based on methylcellulose (MC), cellulose fibers (CF), and lignin (LN). The results indicate that adding organosolv lignin to a foam prepared using MC and CF moderately increases Young’s modulus, protects the foam from the growth of Escherichia coli bacteria, and improves the hydrophobicity of the foam surface. This article concludes that organosolv lignin enhances many properties of cellulose biocomposite foams that are required in applications such as insulation, packaging, and cushioning. The optimization of the foam composition offers research directions toward the upscaling of the material solution to the industrial scale.
Graphical abstract
A more sustainable future calls for bio-based alternatives to replace plastic foams for various applications, such as packaging, insulation and cushioning. Some bio-based foams emerging in scientific publications are fabricated using liquid foam templating and methyl cellulose as well as fibers as main constituents. Scaling up of the production, however, requires a comprehensive understanding of the rheology of the foam during the shaping and drying processes. In this article, we report rheological studies of cellulose based systems in the context of thermal gelation. In more precise terms, we study how the presence of cellulose fibers and other additive materials influences the thermal gelation properties of methyl cellulose. We observe that the rheological properties, while heavily dependent on the material composition, are reasonably adjustable by appropriate material choices. The fibers are seen to decrease the temperature required for methyl cellulose to undergo a viscoelastic transition which is useful in the solid foam fabrication process. We anticipate that in the present application, the fibers increase the stability of the desired structure during the drying stage of the foam.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.