SUMMARY Immunoglobulin A (IgA) is prominently secreted at mucosal surfaces and coats a fraction of the intestinal microbiota. However, the commensal bacteria bound by IgA are poorly characterized and the type of humoral immunity they elicit remains elusive. We used bacterial flow cytometry coupled with 16S rRNA gene sequencing (IgA-Seq) in murine models of immunodeficiency to identify IgA-bound bacteria and elucidate mechanisms of commensal IgA targeting. We found that residence in the small intestine, rather than bacterial identity, dictated induction of specific IgA. Most commensals elicited strong T-independent (TI) responses that originated from the orphan B1b lineage and from B2 cells, but excluded natural antibacterial B1a specificities. Atypical commensals including segmented filamentous bacteria and Mucispirillum evaded TI responses but elicited T-dependent IgA. These data demonstrate exquisite targeting of distinct commensal bacteria by multiple layers of humoral immunity and reveal a specialized function of the B1b lineage in TI mucosal IgA responses.
Rapid advances in DNA synthesis techniques have made it possible to engineer viruses, biochemical pathways and assemble bacterial genomes. Here, we report the synthesis of a functional 272,871 bp designer eukaryotic chromosome, synIII, which is based on the 316,617 bp native Saccharomyces cerevisiae chromosome III. Changes to synIII include TAG/TAA stop-codon replacements, deletion of subtelomeric regions, introns, tRNAs, transposons and silent mating loci as well as insertion of loxPsym sites to enable genome scrambling. SynIII is functional in S. cerevisiae. Scrambling of the chromosome in a heterozygous diploid reveals a large increase in “a mater” derivatives resulting from loss of the MATα allele on synIII. The total synthesis of synIII represents the first complete design and synthesis of a eukaryotic chromosome, establishing S. cerevisiae as the basis for designer eukaryotic genome biology.
SummaryThe precise lineage relationship between innate lymphoid cells (ILC) and lymphoid tissue inducer (LTi) cells is poorly understood. Using single-cell multiplex transcriptional analysis of 100 lymphoid genes and single-cell cultures of fetal liver precursor cells, we identified the common proximal precursor to these lineages and showed that its bifurcation was marked by the differential induction of the transcription factors PLZF and TCF1. Acquisition of individual ILC subset-specific effector programs was initiated later, at the common ILC precursor stage, by transient expression of mixed ILC1, ILC2 and ILC3 transcriptional patterns whereas, in contrast, LTi cell development did not go through multilineage priming. These findings provide insights into divergent mechanisms of ILC and LTi cell lineage differentiation and establish a high-resolution blueprint of their development.
SUMMARY The origin and developmental pathway of intestinal T cell receptor αβ+ CD4−CD8β− intraepithelial lymphocytes (unconventional iIELs), a major population of innate-like resident cytolytic T cells, have remained elusive. By cloning and expressing several TCRs isolated from unconventional iIELs, we identified immature CD4loCD8lo(DPlo)CD69hiPD-1hi thymocytes as the earliest postsignaling precursors for these cells. Although these precursors displayed multiple signs of elevated TCR signaling, a sizeable fraction of them escaped deletion to selectively engage unconventional iIEL differentiation. Conversely, TCRs cloned from DPloCD69hiPD-1hi thymocytes, a population enriched in autoreactive thymocytes, selectively gave rise to unconventional iIELs upon transgenic expression. Thus, the unconventional iIEL precursor overlaps with the DPlo population undergoing negative selection, indicating that, concomitant with the downregulation of both CD4 and CD8 coreceptors, a balance between apoptosis and survival signals results in outcomes as divergent as clonal deletion and differentiation to the unconventional iIEL lineage.
Among the variety of tissue-resident NK-like populations recently distinguished from recirculating classical NK (cNK) cells, liver innate lymphoid cells (ILC) type 1 (ILC1s) have been shown to represent a distinct lineage that originates from a novel promyelocytic leukaemia zinc finger (PLZF)-expressing ILC precursor (ILCP) strictly committed to the ILC1, ILC2, and ILC3 lineages. Here, using PLZF-reporter mice and cell transfer assays, we studied the developmental progression of ILC1s and demonstrated substantial overlap with stages previously ascribed to the cNK lineage, including pre–pro-NK, pre-NK precursor (pre-NKP), refined NKP (rNKP), and immature NK (iNK). Although they originated from different precursors, the ILC1 and cNK lineages followed a parallel progression at early stages and diverged later at the iNK stage, with a striking predominance of ILC1s over cNKs early in ontogeny. Although a limited set of ILC1 genes depended on PLZF for expression, characteristically including Il7r, most of these genes were also differentially expressed between ILC1s and cNKs, indicating that PLZF together with other, yet to be defined, factors contribute to the divergence between these lineages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.