Like human language, song in songbirds is learned during an early sensitive period and is facilitated by motivation to seek out social interactions with vocalizing adults. Songbirds are therefore powerful models with which to understand the neural underpinnings of vocal learning. Social motivation and early social orienting are thought to be mediated by the oxytocin system; however, the developmental trajectory of oxytocin receptors in songbirds, particularly as it relates to song learning, is currently unknown. This gap in knowledge has hindered the development of songbirds as a model of the role of social orienting in vocal learning. In this study, we used quantitative PCR to measure oxytocin receptor expression during the sensitive period of song learning in zebra finches (Taeniopygia guttata). We focused on brain regions important for social motivation, attachment, song recognition, and song learning. We detected expression in these regions in both sexes from posthatch day 5 to adulthood, encompassing the entire period of song learning. In this species, only males sing; we found that in regions implicated in song learning specifically, oxytocin receptor mRNA expression was higher in males than females. These sex differences were largest during the developmental phase when males attend to and memorize tutor song, suggesting a functional role of expression in learning. Our results show that oxytocin receptors are expressed in relevant brain regions during song learning, and thus provide a foundation for developing the zebra finch as a model for understanding the mechanisms underlying the role of social motivation in vocal development.
Background Braak’s hypothesis states that sporadic Parkinson’s disease (PD) follows a specific progression of pathology from the peripheral to the central nervous system, and this progression can be monitored by detecting the accumulation of alpha-Synuclein (α-Syn) protein. Consequently, there is growing interest in understanding how the gut (commensal) microbiome can regulate α-Syn accumulation, as this could potentially lead to PD. Methods We used 16S rRNA and shotgun sequencing to characterise microbial diversity. 1H-NMR was employed to understand the metabolite production and intestinal inflammation estimated using ELISA and RNA-sequencing from feces and the intestinal epithelial layer respectively. The Na+ channel current and gut permeability were measured using an Ussing chamber. Immunohistochemistry and immunofluorescence imaging were applied to detect the α-Syn protein. LC-MS/MS was used for characterization of proteins from metabolite treated neuronal cells. Finally, Metascape and Ingenuity Pathway Analysis (IPA) bioinformatics tools were used for identification of dysregulated pathways. Results We studied a transgenic (TG) rat model overexpressing the human SNCA gene and found that a progressive gut microbial composition alteration characterized by the reduction of Firmicutes to Bacteroidetes ratio could be detected in the young TG rats. Interestingly, this ratio then increased with ageing. The dynamics of Lactobacillus and Alistipes were monitored and reduced Lactobacillus and increased Alistipes abundance was discerned in ageing TG rats. Additionally, the SNCA gene overexpression resulted in gut α-Syn protein expression and increased with advanced age. Further, older TG animals had increased intestinal inflammation, decreased Na+ current and a robust alteration in metabolite production characterized by the increase of succinate levels in feces and serum. Manipulation of the gut bacteria by short-term antibiotic cocktail treatment revealed a complete loss of short-chain fatty acids and a reduction in succinate levels. Although antibiotic cocktail treatment did not change α-Syn expression in the enteric nervous system of the colon, however, reduced α-Syn expression was detected in the olfactory bulbs (forebrain) of the TG rats. Conclusion Our data emphasize that the gut microbiome dysbiosis synchronous with ageing leads to a specific alteration of gut metabolites and can be modulated by antibiotics which may affect PD pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.