Reducing the social, environmental, and economic impacts of droughts and identifying pathways towards drought resilient societies remains a global priority. A common understanding of the drivers of drought risk and ways in which drought impacts materialize is crucial for improved assessments and for the identification and (spatial) planning of targeted drought risk reduction and adaptation options. Over the past two decades, we have witnessed an increase in drought risk assessments across spatial and temporal scales drawing on a multitude of conceptual foundations and methodological approaches. Recognizing the diversity of approaches in science and practice as well as the associated opportunities and challenges, we present the outcomes of a systematic literature review of the state of the art of people-centered drought vulnerability and risk conceptualization and assessments, and identify persisting gaps. Our analysis shows that, of the reviewed assessments, (i) more than 60% do not explicitly specify the type of drought hazard that is addressed, (ii) 42% do not provide a clear definition of drought risk, (iii) 62% apply static, index-based approaches, (iv) 57% of the indicatorbased assessments do not specify their weighting methods, (v) only 11% conduct any form of validation, (vi) only ten percent develop future scenarios of drought risk, and (vii) only about 40% of the assessments establish a direct link to drought risk reduction or adaptation strategies, i.e. consider solutions. We discuss the challenges associated with these findings for both assessment and identification of drought risk reduction measures, and identify research needs to inform future research and policy agendas in order to advance the understanding of drought risk and support pathways towards more drought resilient societies.
Abstract. Droughts continue to affect ecosystems, communities and entire economies. Agriculture bears much of the impact, and in many countries it is the most heavily affected sector. Over the past decades, efforts have been made to assess drought risk at different spatial scales. Here, we present for the first time an integrated assessment of drought risk for both irrigated and rainfed agricultural systems at the global scale. Composite hazard indicators were calculated for irrigated and rainfed systems separately using different drought indices based on historical climate conditions (1980–2016). Exposure was analyzed for irrigated and non-irrigated crops. Vulnerability was assessed through a socioecological-system (SES) perspective, using socioecological susceptibility and lack of coping-capacity indicators that were weighted by drought experts from around the world. The analysis shows that drought risk of rainfed and irrigated agricultural systems displays a heterogeneous pattern at the global level, with higher risk for southeastern Europe as well as northern and southern Africa. By providing information on the drivers and spatial patterns of drought risk in all dimensions of hazard, exposure and vulnerability, the presented analysis can support the identification of tailored measures to reduce drought risk and increase the resilience of agricultural systems.
The devastating impacts of drought are fast becoming a global concern. Zimbabwe is among the countries more severely affected, where drought impacts have led to water shortages, declining yields, and periods of food insecurity, accompanied by economic downturns. In particular, the country’s agricultural sector, mostly comprised of smallholder rainfed systems, is at great risk of drought. In this study, a multimethod approach is applied, including a remote sensing-based analysis of vegetation health data from 1989–2019 to assess the drought hazard, as well as a spatial analysis combined with expert consultations to determine drought vulnerability and exposure of agricultural systems. The results show that droughts frequently occur with changing patterns across Zimbabwe. Every district has been affected by drought during the past thirty years, with varying levels of severity and frequency. Severe drought episodes have been observed in 1991–1992, 1994–1995, 2002–2003, 2015–2016, and 2018–2019. Drought vulnerability and exposure vary substantially in the country, with the south-western provinces of Matabeleland North and South showing particularly high levels. Assessments of high-risk areas, combined with an analysis of the drivers of risk, set the path towards tailor-made adaptation strategies that consider drought frequency and severity, exposure, and vulnerability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.