The still prevalent use of paper conformity lists in the automotive industry has a serious negative impact on the performance of quality control inspectors. We propose instead a hybrid quality inspection system, where we combine automated detection with human feedback, to increase worker performance by reducing mental and physical fatigue, and the adaptability and responsiveness of the assembly line to change. The system integrates the hierarchical automatic detection of the non-conforming vehicle parts and information visualization on a wearable device to present the results to the factory worker and obtain human confirmation. Besides designing a novel 3D vehicle generator to create a digital representation of the non conformity list and to collect automatically annotated training data, we apply and aggregate in a novel way state-of-the-art domain adaptation and pseudo labeling methods to our real application scenario, in order to bridge the gap between the labeled data generated by the vehicle generator and the real unlabeled data collected on the factory floor. This methodology allows us to obtain, without any manual annotation of the real dataset, an example-based F1 score of 0.565 in an unconstrained scenario and 0.601 in a fixed camera setup (improvements of 11 and 14.6 percentage points, respectively, over a baseline trained with purely simulated data). Feedback obtained from factory workers highlighted the usefulness of the proposed solution, and showed that a truly hybrid assembly line, where machine and human work in symbiosis, increases both efficiency and accuracy in automotive quality control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.