Coronavirus disease 2019 (COVID-19) is a respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and marked by an intense inflammatory response and immune dysregulation in the most severe cases. In order to better clarify the relationship between peripheral immune system changes and the severity of COVID-19, this study aimed to evaluate the frequencies and absolute numbers of peripheral subsets of neutrophils, monocytes, and dendritic cells (DCs), in addition to quantifying the levels of inflammatory mediators. One hundred fifty-seven COVID-19 patients were stratified into mild, moderate, severe, and critical disease categories. The cellular components and circulating cytokines were assessed by flow cytometry. Nitric oxide (NOx) and myeloperoxidase (MPO) levels were measured by colourimetric tests. COVID-19 patients presented neutrophilia, with signs of emergency myelopoiesis. Alterations in the monocytic component were observed in patients with moderate to critical illness, with an increase in classical monocytes and a reduction in nonclassical monocytes, in addition to a reduction in the expression of HLA-DR in all subtypes of monocytes, indicating immunosuppression. DCs, especially plasmacytoid DCs, also showed a large reduction in moderate to critical patients. COVID-19 patients showed an increase in MPO, interleukin (IL)-12, IL-6, IL-10, and IL-8, accompanied by a reduction in IL-17A and NOx. IL-10 levels ≥14 pg/ml were strongly related to the worst outcome, with a sensitivity of 78•3% and a specificity of 79•1%. The results of this study indicate the presence of systemic
Although guanosine is an endogenous nucleoside that displays antidepressant-like properties in several animal models, the mechanism underlying its antidepressant-like effects is not well characterized. The present study aimed at investigating the involvement of ERK/GSK-3β and Nrf2/HO-1 signaling pathways in the antidepressant-like effect of guanosine in the mouse tail suspension test (TST). The immobility time in the TST was taken as an indicative of antidepressant-like responses and the locomotor activity was assessed in the open-field test. Biochemical analyses were performed by Western blotting in the hippocampus and prefrontal cortex (PFC). The combined treatment with sub-effective doses of guanosine (0.01 mg/kg, p.o.) and lithium chloride (a non-selective GSK-3β inhibitor, 10 mg/kg, p.o.) or AR-A014418 (selective GSK-3β inhibitor, 0.01 μg/site, i.c.v.) produced a synergistic antidepressant-like effect in the TST. The antidepressant-like effect of guanosine (0.05 mg/kg, p.o.) was completely prevented by the treatment with MEK1/2 inhibitors U0126 (5 μg/site, i.c.v.), PD98059 (5 μg/site, i.c.v.), or zinc protoporphyrin IX (ZnPP) (HO-1 inhibitor, 10 μg/site, i.c.v). Guanosine administration (0.05 mg/kg, p.o.) increased the immunocontent of β-catenin in the nuclear fraction and Nrf2 in the cytosolic fraction in the hippocampus and PFC. The immunocontent of HO-1 was also increased in the hippocampus and PFC. Altogether, the results provide evidence that the antidepressant-like effect of guanosine in the TST involves the inhibition of GSK-3β, as well as activation of MAPK/ERK and Nrf2/HO-1 signaling pathways, highlighting the relevance of these molecular targets for antidepressant responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.