Gluconeogenesis (GN) is increased in patients with cancer cachexia, but is reduced in liver perfusion of Walker-256 tumor-bearing cachectic rats (TB rats). The causes of these differences are unknown. We investigated the influence of circulating concentrations of lactate (NADH generator) and NADH on GN in perfused livers of TB rats. Lactate, at concentrations similar to those found on days 5 (3.0 mM), 8 (5.5 mM), and 12 (8.0 mM) of the tumor, prevented the reduction of GN from 2.0 mM lactate (lactatemia of healthy rat) in TB rats. NADH, 50 or 75 μM, but not 25 μM, increased GN from 2.0 mM lactate in TB rats to higher values than healthy rats. High concentrations of pyruvate (no NADH generator, 5.0 and 8.0 mM) did not prevent the reduction of GN from 2.0 mM pyruvate in TB rats. However, 50 or 75 μM NADH, but not 25 μM, increased GN from 2.0 mM pyruvate in TB rats to similar or higher values than healthy rats. High concentration of glutamine (NADH generator, 2.5 mM) or 50 μM NADH prevented the reduction of GN from 1 mM glutamine in TB rats. Intraperitoneal administration of pyruvate (1.0 mg/kg) or glutamine (0.5 mg/kg) similarly increased the glycemia of healthy and TB rats. In conclusion, high lactate concentration, similar to hyperlactatemia, prevented the reduction of GN in perfused livers of TB rats, an effect probably caused by the increased redox potential (NADH/NAD + ). Thus, the decreased GN in livers from TB rats is due, at least in part, to the absence of simulation of in vivo hyperlactatemia in liver perfusion studies. K E Y W O R D Scachexia, cancer, glucose production, hepatic metabolism, lactate
Sepsis induces several metabolic abnormalities, including hypoglycaemia in the most advanced stage of the disease, a risk factor for complications and death. Although hypoglycaemia can be caused by inhibition of hepatic gluconeogenesis, decreased and increased gluconeogenesis were reported in sepsis. Furthermore, gluconeogenesis from glycerol was not yet evaluated in this disease. The main purpose of this study was to investigate the gluconeogenesis from alanine, lactate, pyruvate and glycerol in rats with early (8 hours) and late (18 hours) sepsis. Parameters related to the characterization of sepsis were also evaluated. Sepsis was induced by cecal ligation and puncture and gluconeogenesis was assessed in liver perfusion. Rats with early and late sepsis showed increased lactataemia, depletion of liver glycogen and peripheral insulin resistance, characterizing the establishment of sepsis. Rats with early and late sepsis showed decreased gluconeogenesis from alanine, lactate and pyruvate. Interestingly, gluconeogenesis from glycerol, a precursor that enters in the pathway at a later step, subsequent to the entry of alanine, lactate and pyruvate, was maintained in rats with early and late sepsis. In conclusion, gluconeogenesis is decreased from alanine, lactate and pyruvate, but maintained from glycerol, in liver perfusion of rats with early and late sepsis. Significance of the study The maintenance of gluconeogenesis from glycerol, but not from alanine, lactate and pyruvate, together with the liver glycogen depletion, points the glycerol as an important precursor for the maintenance of glycaemic homeostasis in sepsis. The findings open the possibility of further investigation on the administration of glycerol in the treatment of hypoglycaemia associated with more advanced sepsis.
Lixisenatide, a glucagon‐like peptide‐1 (GLP‐1) receptor agonist, is used in the treatment of type 2 diabetes mellitus (T2DM). It increases insulin (INS) secretion and can decrease INS resistance, improving metabolic disorders in this disease. However, its effects on metabolic disturbances in cancer‐bearing, which also exhibit decreased INS secretion and INS resistance, changes that may contribute to weight loss (cachexia), have not yet been evaluated. The purpose of this study was to investigate the lixisenatide treatment effects on mild cachexia and related metabolic abnormalities in Walker‐256 tumour‐bearing rats. Lixisenatide (50 μg kg−1, SC) was administered once daily, for 6 days, after inoculation of Walker‐256 tumour cells. Acute lixisenatide treatment did not improve hypoinsulinemia, INS secretion and INS resistance of tumour‐bearing rats. It also did not prevent the reduced glucose and increased triacylglycerol and lactate in the blood and nor the loss of retroperitoneal and epididymal fat of these animals. However, acute lixisenatide treatment accentuated the body mass loss of tumour‐bearing rats. Therefore, lixisenatide, unlike T2DM, does not improve hypoinsulinemia and INS resistance associated with cancer, evidencing that it does not have the same beneficial effects in these two diseases. In addition, lixisenatide aggravated weight loss of tumour‐bearing rats, suggesting that its use for treatment of T2DM patients with cancer should be avoided. Significance of the study Lixisenatide increases insulin secretion and appears to reduce insulin resistance in T2DM. However, lixisenatide treatment does not improve hypoinsulinemia and insulin resistance associated with cancer, as it does in T2DM, and aggravated weight loss, suggesting that its use for treatment of T2DM patients with cancer should be avoided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.