PGZ and PGZ+INS improved INS peripheral sensitivity, possibly by decreasing blood free fatty acids, and reduced fat tissue wasting and body weight loss in small tumor-bearing rats. The results suggest clinical benefits of PGZ in preventing INS resistance, adipose tissue wasting and weight loss when the tumor is small, i.e., in less severe cachexia.
Metformin (MET) is widely used in the correction of insulin (INS) resistance and metabolic abnormalities in type 2 diabetes. However, its effect on INS resistance and metabolic disorders associated with cancer cachexia is not established. We investigated the MET effects, isolated or associated with INS, on INS resistance and metabolic changes induced by Walker-256 tumor in rats with advanced cachexia. MET (500 mg·kg, oral) and MET + INS (1.0 IU·kg, s.c.) were administered for 12 days, starting on the day of tumor cell inoculation. Tumor-bearing rats showed adipose and muscle mass wasting, body mass loss, anorexia, decreased Akt phosphorylation in retroperitoneal and mesenteric adipose tissue, peripheral INS resistance, hypoinsulinemia, reduced INS content and secretion from pancreatic islets, and also inhibition of glycolysis, gluconeogenesis, and glycogenolysis in liver. MET and MET + INS treatments did not prevent these changes. It can be concluded that treatments with MET and MET + INS did not prevent the adipose and muscle mass wasting and body mass loss of tumor-bearing rats possibly by not improving INS resistance. Therefore, MET, used for the treatment of INS resistance in type 2 diabetes, is not effective in improving INS resistance in the advanced stage of cancer cachexia, evidencing that the drug does not have the same beneficial effect in these 2 diseases.
Sepsis induces several metabolic abnormalities, including hypoglycaemia in the most advanced stage of the disease, a risk factor for complications and death. Although hypoglycaemia can be caused by inhibition of hepatic gluconeogenesis, decreased and increased gluconeogenesis were reported in sepsis. Furthermore, gluconeogenesis from glycerol was not yet evaluated in this disease. The main purpose of this study was to investigate the gluconeogenesis from alanine, lactate, pyruvate and glycerol in rats with early (8 hours) and late (18 hours) sepsis. Parameters related to the characterization of sepsis were also evaluated. Sepsis was induced by cecal ligation and puncture and gluconeogenesis was assessed in liver perfusion. Rats with early and late sepsis showed increased lactataemia, depletion of liver glycogen and peripheral insulin resistance, characterizing the establishment of sepsis. Rats with early and late sepsis showed decreased gluconeogenesis from alanine, lactate and pyruvate. Interestingly, gluconeogenesis from glycerol, a precursor that enters in the pathway at a later step, subsequent to the entry of alanine, lactate and pyruvate, was maintained in rats with early and late sepsis. In conclusion, gluconeogenesis is decreased from alanine, lactate and pyruvate, but maintained from glycerol, in liver perfusion of rats with early and late sepsis.
Significance of the study
The maintenance of gluconeogenesis from glycerol, but not from alanine, lactate and pyruvate, together with the liver glycogen depletion, points the glycerol as an important precursor for the maintenance of glycaemic homeostasis in sepsis. The findings open the possibility of further investigation on the administration of glycerol in the treatment of hypoglycaemia associated with more advanced sepsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.