ABSTRACT. The pretreatment of samples for radiocarbon measurements, transforming a variety of materials into graphite solid targets, represents a critical point in the accelerator mass spectrometry (AMS) procedure. We describe the new, state-ofthe-art CIRCE AMS preparation laboratory, particularly the setup and optimization of an alternative method, the zinc reduc tion method, for graphite target production, compared to the more common hydrogen reduction method. Measured ,4 C values on standard and blank samples reduced via zinc reaction revealed mean background levels, accuracy, and sensitivity compa rable to those obtained by our conventional hydrogen reaction lines. Zinc line reduction at the CIRCE laboratory represents an effective and powerful alternative to the conventional hydrogen reduction, ensuring higher sample throughput with lower costs at a comparable performance level.
Mortars represent a class of building and art materials that are widespread at archeological sites from the Neolithic period on. After about 50 years of experimentation, the possibility to evaluate their absolute chronology by means of radiocarbon ((14)C) remains still uncertain. With the use of a simplified mortar production process in the laboratory environment, this study shows the overall feasibility of a novel physical pretreatment for the isolation of the atmospheric (14)CO(2) (i.e., binder) signal absorbed by the mortars during their setting. This methodology is based on the assumption that an ultrasonic attack in liquid phase isolates a suspension of binder carbonates from bulk mortars. Isotopic ((13)C and (14)C), % C, X-ray diffractometry (XRD), and scanning electron microscopy (SEM) analyses were performed to characterize the proposed methodology. The applied protocol allows suppression of the fossil carbon (C) contamination originating from the incomplete burning of the limestone during the quick lime production, providing unbiased dating for "laboratory" mortars produced operating at historically adopted burning temperatures.
ABSTRACT. Seven radiocarbon laboratories: Åbo/Aarhus, CIRCE, CIRCe, ETHZ, Poznań, RICH, and Milano-Bicocca performed separation of carbonaceous fractions suitable for
Absolute dating of mortars is crucial when trying to pin down construction phases of archaeological sites and historic stone buildings to a certain point in time or to confirm, but possibly also challenge, existing chronologies. To evaluate various sample preparation methods for radiocarbon (14C) dating of mortars as well as to compare different dating methods, i.e. 14C and optically stimulated luminescence (OSL), a mortar dating intercomparison study (MODIS) was set up, exploring existing limits and needs for further research. Four mortar samples were selected and distributed among the participating laboratories: one of which was expected not to present any problem related to the sample preparation methodologies for anthropogenic lime extraction, whereas all others addressed specific known sample preparation issues. Data obtained from the various mortar dating approaches are evaluated relative to the historical framework of the mortar samples and any deviation observed is contextualized to the composition and specific mineralogy of the sampled material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.