Innate immune memory describes the functional reprogramming of innate immune cells after pathogen contact, leading to either a boosted (trained immunity) or a diminished (immune tolerance) response to a secondary stimulus. Immune tolerance or “sepsis-induced immunosuppression” is a typical hallmark of patients after sepsis survival, characterized by hypo-responsiveness of the host's immune system. This condition renders the host vulnerable for a persisting infection or the occurrence of secondary, often opportunistic infections, along with an increased mortality rate. The mechanisms involved in the maintenance of this long-lasting condition are not examined yet. Polymicrobial abdominal sepsis was induced in 12 week old male C57BL/6 mice by cecal ligation and puncture. Mice were euthanized 3 months after insult. Immune cell composition of the spleen and whole blood, as well as stem and progenitor cells of the bone marrow, were assessed by flow cytometry. Whole blood and bone marrow monocytes were stimulated with LPS and supernatant levels of TNF and IL-6 detected by ELISA. Furthermore, naïve bone marrow monocytes were analyzed for metabolic (Seahorse technology) and transcriptomic (RNA sequencing) changes. Flow cytometric analysis revealed an increase of inflammatory monocytes and regulatory T cells in the spleen, whereby immune composition of whole blood kept unchanged. Granulocyte-monocyte progenitor cells are increased in sepsis survivors. Systemic cytokine response was unchanged after LPS challenge. In contrast, cytokine response of post-septic naïve bone marrow monocytes was increased. Metabolic analysis revealed enhanced glycolytic activity, whereas mitochondrial indices were not affected. In addition, RNA sequencing analysis of global gene expression in monocytes revealed a sustained signature of 367 differentially expressed genes. We here demonstrate that sepsis via functional reprogramming of naïve bone marrow monocytes induces a cellular state of trained immunity, which might be counteracted depending on the compartmental localization of the cell. These findings shed new light on the complex aftermath of sepsis and open up a new pathophysiological framework in need for further research.
BackgroundWith more than 18 million annual new cases, cancer belongs to the major challenges of modern healthcare. Surgical resection of solid tumours under general anaesthesia is the prime therapy. Different aspects of anaesthesia are under discussion to independently influence the long-term outcome of cancer patients. Most recently, the commonly used volatile anaesthetics like sevoflurane have entered the spotlight, as retrospective studies suggest a detrimental outcome in certain cancer aetiologies with sparse mechanistic understanding. Our objective was to investigate this concept in a murine melanoma model, herein comparing the consequence of inhalative and injection anesthesia on tumour composition and growth. MethodsWe used a murine model of malignant melanoma in male, adult C57BL/6 mice (n = 92), induced by the subcutaneous injection of B16-F10 cells. We either exposed the melanoma cells to sevoflurane before implantation or subjected the animals to single or double anaesthesia with either volatile or injection drugs. After a maximum follow-up of 4 weeks, leucocytes within the tumour microenvironment (TME) were comprehensively analysed by flow cytometry with focus on tumor-associated macrophages (TAM). ResultsWe found that exposure of melanoma cells to sevoflurane before implantation induced longlasting transcriptome changes and aggravated tumour growth, without extensive changes of the TME. Contrastingly, both a single and double anaesthesia with sevoflurane led to a significant reduction of TAMs (injection vs. sevoflurane: 2,0 vs. 0.3% and 1.2 vs. 0.6%, respectively), whilst increasing PD-L1 expression on the remaining cells (mean fluorescent intensity injection vs. sevoflurane: 3,804 vs. 7,143 and 9,090 vs. 32,228, respectively). No changes in tumour growth were observed in these groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.