Innate immune memory describes the functional reprogramming of innate immune cells after pathogen contact, leading to either a boosted (trained immunity) or a diminished (immune tolerance) response to a secondary stimulus. Immune tolerance or “sepsis-induced immunosuppression” is a typical hallmark of patients after sepsis survival, characterized by hypo-responsiveness of the host's immune system. This condition renders the host vulnerable for a persisting infection or the occurrence of secondary, often opportunistic infections, along with an increased mortality rate. The mechanisms involved in the maintenance of this long-lasting condition are not examined yet. Polymicrobial abdominal sepsis was induced in 12 week old male C57BL/6 mice by cecal ligation and puncture. Mice were euthanized 3 months after insult. Immune cell composition of the spleen and whole blood, as well as stem and progenitor cells of the bone marrow, were assessed by flow cytometry. Whole blood and bone marrow monocytes were stimulated with LPS and supernatant levels of TNF and IL-6 detected by ELISA. Furthermore, naïve bone marrow monocytes were analyzed for metabolic (Seahorse technology) and transcriptomic (RNA sequencing) changes. Flow cytometric analysis revealed an increase of inflammatory monocytes and regulatory T cells in the spleen, whereby immune composition of whole blood kept unchanged. Granulocyte-monocyte progenitor cells are increased in sepsis survivors. Systemic cytokine response was unchanged after LPS challenge. In contrast, cytokine response of post-septic naïve bone marrow monocytes was increased. Metabolic analysis revealed enhanced glycolytic activity, whereas mitochondrial indices were not affected. In addition, RNA sequencing analysis of global gene expression in monocytes revealed a sustained signature of 367 differentially expressed genes. We here demonstrate that sepsis via functional reprogramming of naïve bone marrow monocytes induces a cellular state of trained immunity, which might be counteracted depending on the compartmental localization of the cell. These findings shed new light on the complex aftermath of sepsis and open up a new pathophysiological framework in need for further research.
BackgroundSepsis represents the utmost severe consequence of infection, involving a dysregulated and self-damaging immune response of the host. While different environmental exposures like chronic stress or malnutrition have been well described to reprogram the germline and subsequently offspring attributes, the intergenerational impact of sepsis as a tremendous immunological stressor has not been examined yet.MethodsPolymicrobial sepsis in 12-week-old male C57BL/6 mice was induced by cecal ligation and puncture (CLP), followed by a mating of the male survivors (or appropriate sham control animals) 6 weeks later with healthy females. Alveolar macrophages of offspring animals were isolated and stimulated with either LPS or Zymosan, and supernatant levels of TNF-α were quantified by ELISA. Furthermore, systemic cytokine response to intraperitoneally injected LPS was assessed after 24 h. Also, morphology, motility, and global DNA methylation of the sepsis survivors’ sperm was examined.ResultsComparative reduced reduction bisulfite sequencing (RRBS) of sperm revealed changes of DNA methylation (n = 381), most pronounced in the intergenic genome as well as within introns of developmentally relevant genes. Offspring of sepsis fathers exhibited a slight decrease in body weight, with a more pronounced weight difference in male animals (CLP vs. sham). Male descendants of sepsis fathers, but not female descendants, exhibited lower plasma concentrations of IL-6, TNF-alpha, and IL-10 24 h after injection of LPS. In line, only alveolar macrophages of male descendants of sepsis fathers produced less TNF-alpha upon Zymosan stimulation compared to sham descendants, while LPS responses kept unchanged.ConclusionWe can prove that male—but surprisingly not female—descendants of post-sepsis fathers show a dampened systemic as well as pulmonary immune response. Based on this observation of an immune hypo-responsivity, we propose that male descendants of sepsis fathers are at risk to develop fungal and bacterial infections and might benefit from therapeutic immune modulation.Electronic supplementary materialThe online version of this article (10.1186/s13148-018-0522-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.