SummaryThe spermosphere is the zone surrounding seeds where interactions between the soil, microbial communities and germinating seeds take place. The concept of the spermosphere is usually only applied during germination sensu stricto. Despite the transient nature of this very small zone of soil around the germinating seed, the microbial activities which occur there may have longlasting impacts on plants. The spermosphere is indirectly characterized by either (i) seed exudates, which could be inhibitors or stimulators of microorganism growth or (ii) the composition of the microbiome on and around the germinating seeds. The microbial communities present in the spermosphere directly reflect that of the germination medium or are hostdependent and influenced quantitatively and qualitatively by host exudates. Despite its strong impact on the future development of plants, the spermosphere remains little studied. This can be explained by the technical difficulties related to characterizing this concept due to its short duration, small size and biomass, and the number and complexity of the interactions that take place. However, recent technical methods, such as metabolite profiling, combining phenotypic methods with DNA-and RNA-based methods, could be used to investigate seed exudates, microbial communities and their interactions with the soil environment.
Flaxseed mucilage from Linum usitatissimum L. species was constituted by arabinoxylan (about 75%) and pectin (about 25%). A new procedure was developed to obtain only arabinoxylans which implicated treatment of the pectin fraction by enzymatic hydrolysis with pectinase. Then three processes of depolymerization were evaluated on arabinoxylans. First, a thermic hydrolysis in mild acid conditions was performed and an ultrafiltration process was used as purification method. Second, the potential of xylanases from different glycoside hydrolase families for arabinoxylan-oligosaccharides (AXOS) production was tested, and finally a radical depolymerization was conducted. Average molecular weights were determined by high pressure size exclusion chromatography coupled with multiple angle laser light scattering (MALLS), and carbohydrate compositions were determined by high pH anion exchange chromatography pulse amperometric detector (HPAEC-PAD). Both chemical and enzymatic treatments were inefficient to convert arabinoxylans from flaxseed mucilage into AXOS. Only radical depolymerization process was allowed to obtain arabinoxylan-oligosaccharides presenting different molecular weights (11.9 x 10(3) to 1.9 x 10(3) g mol(-1)) with satisfactory yields (75% to 35%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.