Article 25fa states that the author of a short scientific work funded either wholly or partially by Dutch public funds is entitled to make that work publicly available for no consideration following a reasonable period of time after the work was first published, provided that clear reference is made to the source of the first publication of the work.This publication is distributed under The Association of Universities in the Netherlands (VSNU) 'Article 25fa implementation' project. In this project research outputs of researchers employed by Dutch Universities that comply with the legal requirements of Article 25fa of the Dutch Copyright Act are distributed online and free of cost or other barriers in institutional repositories. Research outputs are distributed six months after their first online publication in the original published version and with proper attribution to the source of the original publication.
Massive outbreaks of virus yellows (VY) and syndrome “basses richesses” (SBR) are thought to be responsible for the major loss of sugar beet yields in 2020 in western cantons of Switzerland. Typical yellowing symptoms were visible during field inspections, and control measures were reportedly ineffective or even absent. Both diseases induce yellowing but have distinct etiologies; while VY is caused by aphid-transmitted RNA viruses, SBR is caused by the cixiid-transmitted γ-proteobacterium Candidatus Arsenophonus phytopathogenicus. To clarify the situation, samples from diseased plants across the country were screened for the causal agents of VY and SBR at the end of the season. Beet yellows virus (BYV) and Beet chlorosis virus (BChV) showed high incidence nationwide, and were frequently found together in SBR-infected fields in the West. Beet mild yellowing virus (BMYV) was detected in two sites in the West, while there was no detection of Beet western yellows virus or Beet mosaic virus. The nucleotide diversity of the detected viruses was then investigated using classic and high-throughput sequencing. For both diseases, outbreaks were analyzed in light of monitoring of the respective vectors, and symptoms were reproduced in greenhouse conditions by means of insect-mediated inoculations. Novel quantification tools were designed for BYV, BChV and Ca. A. phytopathogenicus, leading to the identification of specific tissues tropism for these pathogens.
Blackleg and soft rot in potato caused by Pectobacterium and Dickeya enterobacteral genera are among the most destructive bacterial diseases in this crop worldwide. In Europe, over the last century, Pectobacterium spp. were the predominant causal agents of these diseases. As for Dickeya, before the large outbreak caused by D. solani in the 2000s, only D. dianthicola was isolated in Europe. The population dynamics of potato blackleg causing soft rot Pectobacteriaceae was, however, different in Switzerland as compared to that in other European countries with a high incidence (60 up to 90%) of Dickeya species (at the time called Erwinia chrysanthemi) already in the 1980s. To pinpoint what may underlie this Swiss peculiarity, we analysed the diversity present in the E. chrysanthemi Agroscope collection gathering potato isolates from 1985 to 2000s. Like elsewhere in Europe during this period, the majority of Swiss isolates belonged to D. dianthicola. However, we also identified a few isolates, such as D. chrysanthemi and D. oryzeae, two species that have not yet been reported in potatoes in Europe. Interestingly, this study allowed the characterisation of two “early” D. solani isolated in the 1990s. Genomic comparison between these early D. solani strains and strains isolated later during the large outbreak in the 2000s in Europe revealed only a few SNP and gene content differences, none of them affecting genes known to be important for virulence.
Five isolates of a new member of the family Closteroviridae, tentatively named blackcurrant leafroll-associated virus 1 (BcLRaV-1), were identified in the currant. The 17-kb-long genome codes for 10 putative proteins. The replication-associated polyprotein has several functional domains, including papain-like proteases, methyltransferase, Zemlya, helicase, and RNA-dependent RNA polymerase. Additional open reading frames code for a small protein predicted to integrate into the host cell wall, a heat-shock protein 70 homolog, a heat-shock protein 90 homolog, two coat proteins, and three proteins of unknown functions. Phylogenetic analysis showed that BcLRaV-1 is related to members of the genus Closterovirus, whereas recombination analysis provided evidence of intraspecies recombination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.