Vasopressin-activated calcium mobilizing receptor (VACM-1)/cullin 5 (cul 5) inhibits growth when expressed in T47D breast cancer cells by a mechanism that involves a decrease in MAPK phosphorylation and a decrease in the early growth response element (egr-1) concentration in the nucleus. Since both MAPK and egr-1 pathways can be regulated by 17beta-estradiol, we next examined the effects of VACM-1 cDNA expression on estrogen-dependent growth in T47D cells and on estrogen receptor (ER) concentrations. Our results demonstrate that in T47D cells, both basal and 17beta-estradiol-dependent increase in cell growth and MAPK phosphorylation were inhibited in cells transfected with VACM-1 cDNA. Further, Western blot and immunocytochemistry data analyses indicate that ER concentrations and its nuclear localization are significantly lower in cells transfected with VACM-1 cDNA when compared to controls. These data indicate that in the T47D cancer cell line VACM-1 inhibits growth by attenuating estrogen-dependent signaling responses. These findings may have implications in the development of cancer treatments.
Expression of the VACM-1/cul5 gene in endothelial and in cancer cell lines in vitro inhibits cellular proliferation and decreases phosphorylation of MAPK. Structure-function analysis of the VACM-1 protein sequence identified consensus sites specific for phosphorylation by protein kinases A and C (PKA and PKC) and a Nedd8 protein modification site. Mutations at the PKA-specific site in VACM-1/Cul5 ( S730A VACM-1) sequence resulted in increased cellular growth and the appearance of a Nedd8-modified VACM-1/Cul5. The aim of this study was to examine if PKA-dependent phosphorylation of VACM-1/ Cul5 controls its neddylation status, phosphorylation by PKC, and ultimately growth. Our results indicate that in vitro transfection of rat adrenal medullary endothelial cells with anti-VACM-1-specific small interfering RNA oligonucleotides decreases endogenous VACM-1 protein concentration and increases cell growth. Western blot analysis of cell lysates immunoprecipitated with an antibody directed against a PKAspecific phosphorylation site and probed with anti-VACM-1-specific antibody showed that PKA-dependent phosphorylation of VACM-1 protein was decreased in cells transfected with S730A VACM-1 cDNA when compared with the cytomegalovirustransfected cells. This change was associated with increased modification of VACM-1 protein by Nedd8. Induction of PKA activity with forskolin reduced modification of VACM-1 protein by Nedd8. Finally, rat adrenal medullary endothelial cells transfected with S730A VACM-1/cul5 cDNA and treated with phorbol 12-myristate 13-acetate (10 and 100 nM) to induce PKC activity grew significantly faster than the control cells. These results suggest that the antiproliferative effect of VACM-1/Cul5 is dependent on its posttranslational modifications and will help in the design of new anticancer therapeutics that target the Nedd8 pathway.VACM-1 (vasopressin-activated calcium-mobilizing) protein (1), now identified as a cul5 gene product (2-4), is a 780-amino acid protein with a calculated M r of 91 kDa. Transfection of various cell lines with VACM-1/cul5 cDNA attenuates cellular growth by a mechanism that involves inhibition of cAMP production, decreased phosphorylation of MAPK, 3 and a decrease in nuclear localization of early growth response gene (egr-1) product (5-7). In vivo, VACM-1/Cul5 protein expression is specific to established endothelial cells (8) but is absent in sprouting capillaries (9), suggesting its involvement in the regulation of endothelium-specific growth. Interestingly, the human homolog of VACM-1 differs only in six amino acids from the rabbit VACM-1 and has been proposed to be a candidate for a tumor suppressor (2). Although expression of VACM-1/cul5 cDNA in a cancer-derived cell line, T47D, decreased nuclear concentration of estrogen receptor, ER␣, and inhibited cellular growth (6), the precise mechanism by which VACM-1/Cul5 may regulate cell growth is not known. Like other cullins, however, VACM-1/Cul5 may serve as scaffold protein that allows the assembly of E3 ubiquitin ligase comp...
VACM-1, a cul5 gene product, when overexpressed in vitro, has an antiproliferative effect. In vivo, VACM-1/cul5 is present in tissues involved in the regulation of water balance. Neither proteins targeted for VACM-1/cul5-specific degradation nor factors that may regulate its expression in those tissues have been studied. To identify genes that may be misregulated by VACM-1 cDNA, we performed microarray analysis. Our results indicate that in cos-1 cells transfected with VACM-1 cDNA, mRNA levels for several genes, including AQP1, were decreased when compared to the control group. Our results also indicate that in cos-1 cells transfected with VACM-1 cDNA, endogenous AQP1 protein was decreased about 6-fold when compared to the controls. To test the hypothesis that VACM-1/cul5 may be regulated by conditions that compromise water homeostasis in vivo, we determined if 24 h of water deprivation affects VACM-1/cul5 levels or the effect of VACM-1/cul5 on AQP1. VACM-1 mRNA and protein levels were significantly higher in rat mesenteric arteries, skeletal muscle and the heart ventricle but not in the heart atrium from 24-h water-deprived rats when compared to the controls. Interestingly, 24 h of water deprivation increased modification of VACM-1 by an ubiquitin-like protein, Nedd8, essential for cullin-dependent E3 ligase activity. Although water deprivation did not significantly change AQP1 levels in the mesenteric arteries, AQP1 protein concentrations were inversely correlated with the ratio of the VACM-1 to Nedd8-modified VACM-1. These results suggest that VACM-1/cul5 may regulate endothelial AQP1 concentration both in vivo and in vitro.
Background: In the renal collecting duct, vasopressin regulates water permeability by a process that involves stimulation of adenylyl cyclase activity, cAMP production and subsequent translocation of water channel aquaporin-2 (AQP2) into the apical plasma membrane. We have previously shown that in cos 1 cells in vitro, both adenylyl cyclase activity and cAMP production can be regulated by VACM-1, a cul 5 gene that forms complexes involved in protein ubiquitination and subsequent degradation. Methods: To extend these observations further, the effects of changes in hydration state on the expression of VACM-1 at the mRNA and the protein level were examined in rats deprived of water (WD) for 24 hrs. Results: In the kidney of WD rats Western blot analyses of kidney tissue showed that the decrease in VACM-1 protein concentration was correlated with the increase in the AQP2 protein level. The immunostaining data suggested that VACM-1/cul5 may be decreased in renal collecting duct but increases in the vasculature of the inner medullary region in response to WD. To determine the possible consequences of the WD dependent decrease in VACM-1/cul5, we next examined the effects of VACM-1 expression on AQP2 protein in vitro. Immunocytochemistry and Western blot analyses data indicate that VACM-1/cul5 expression in MDCK line stably expressing AQP2 gene and in cos 1 cells co-transfected with the AQP2 and VACM-1/cul5 cDNAs decreased AQP2 protein concentration when compared to the vector transfected control groups. Conclusion: In summary, our data demonstrate that VACM-1 is involved in the regulation of AQP2 protein concentration and may play a role in regulating water balance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.