Celiac Sprue, a widely prevalent autoimmune disease of the small intestine, is induced in genetically susceptible individuals by exposure to dietary gluten. A 33-mer peptide was identified that has several characteristics suggesting it is the primary initiator of the inflammatory response to gluten in Celiac Sprue patients. In vitro and in vivo studies in rats and humans demonstrated that it is stable toward breakdown by all gastric, pancreatic, and intestinal brush-border membrane proteases. The peptide reacted with tissue transglutaminase, the major autoantigen in Celiac Sprue, with substantially greater selectivity than known natural substrates of this extracellular enzyme. It was a potent inducer of gut-derived human T cell lines from 14 of 14 Celiac Sprue patients. Homologs of this peptide were found in all food grains that are toxic to Celiac Sprue patients but are absent from all nontoxic food grains. The peptide could be detoxified in in vitro and in vivo assays by exposure to a bacterial prolyl endopeptidase, suggesting a strategy for oral peptidase supplement therapy for Celiac Sprue.
Following a recent description of fluorescence resonance energy transfer between enhanced green fluorescent protein (EGFP)-fused human muscarinic M1 receptors and Bodipy-labeled pirenzepine, we synthesized seven fluorescent derivatives of this antagonist in order to further characterize ligand-receptor interactions. These compounds carry Bodipy [558/568], Rhodamine Red-X [560/580], or Fluorolink Cy3 [550/570] fluorophores connected to pirenzepine through various linkers. All molecules reversibly bind with high affinity to M1 receptors (radioligand and energy transfer binding experiments) provided that the linker contains more than six atoms. The energy transfer efficiency exhibits modest variations among ligands, indicating that the distance separating EGFP from the fluorophores remains almost constant. This also supports the notion that the fluorophores may bind to the receptor protein. Kinetic analyses reveal that the dissociation of two Bodipy derivatives (10 or 12 atom long linkers) is sensitive to the presence of the allosteric modulator brucine, while that of all other molecules (15-24 atom long linkers) is not. The data favor the idea that these analogues might interact with both the acetylcholine and the brucine binding domains.
The isoxazolidine ring represents one of the privileged structures in medicinal chemistry, and there have been an increasing number of studies on isoxazolidine and isoxazolidine-containing compounds. Optimization of the 1,3-dipolar cycloaddition (1,3-DC), original methods including electrophilic or palladium-mediated cyclization of unsaturated hydroxylamine, has been developed to obtain isoxazolidines. Novel reactions involving the isoxazolidine ring have been highlighted to accomplish total synthesis or to obtain bioactive compounds, one of the most significant examples being probably the thermic ring contraction applied to the total synthesis of (±)-Gelsemoxonine. The unique isoxazolidine scaffold also exhibits an impressive potential as a mimic of nucleosides, carbohydrates, PNA, amino acids, and steroid analogs. This review aims to be a comprehensive and general summary of the different isoxazolidine syntheses, their use as starting building blocks for the preparation of natural compounds, and their main biological activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.