Celiac Sprue, a widely prevalent autoimmune disease of the small intestine, is induced in genetically susceptible individuals by exposure to dietary gluten. A 33-mer peptide was identified that has several characteristics suggesting it is the primary initiator of the inflammatory response to gluten in Celiac Sprue patients. In vitro and in vivo studies in rats and humans demonstrated that it is stable toward breakdown by all gastric, pancreatic, and intestinal brush-border membrane proteases. The peptide reacted with tissue transglutaminase, the major autoantigen in Celiac Sprue, with substantially greater selectivity than known natural substrates of this extracellular enzyme. It was a potent inducer of gut-derived human T cell lines from 14 of 14 Celiac Sprue patients. Homologs of this peptide were found in all food grains that are toxic to Celiac Sprue patients but are absent from all nontoxic food grains. The peptide could be detoxified in in vitro and in vivo assays by exposure to a bacterial prolyl endopeptidase, suggesting a strategy for oral peptidase supplement therapy for Celiac Sprue.
Two recently identified immunodominant epitopes from alpha-gliadin account for most of the stimulatory activity of dietary gluten on intestinal and peripheral T lymphocytes in patients with celiac sprue. The proteolytic kinetics of peptides containing these epitopes were analyzed in vitro using soluble proteases from bovine and porcine pancreas and brush-border membrane vesicles from adult rat intestine. We showed that these proline-glutamine-rich epitopes are exceptionally resistant to enzymatic processing. Moreover, as estimated from the residual peptide structure and confirmed by exogenous peptidase supplementation, dipeptidyl peptidase IV and dipeptidyl carboxypeptidase I were identified as the rate-limiting enzymes in the digestive breakdown of these peptides. A similar conclusion also emerged from analogous studies with brush-border membrane from a human intestinal biopsy. Supplementation of rat brush-border membrane with trace quantities of a bacterial prolyl endopeptidase led to the rapid destruction of the immunodominant epitopes in these peptides. These results suggest a possible enzyme therapy strategy for celiac sprue, for which the only current therapeutic option is strict exclusion of gluten-containing food.
Dietary gluten proteins from wheat, rye and barley are the primary triggers for the immunopathogenesis of Celiac Sprue, a widespread immune disease of the small intestine. Recent molecular and structural analyses of representative gluten proteins, most notably α-and γ-gliadin proteins from wheat, have improved our understanding of these pathogenic mechanisms. In particular, based on the properties of a 33-mer peptide, generated from α-gliadin under physiological conditions, a link between digestive resistance and inflammatory character of gluten has been proposed. Here we report three lines of investigation in support of this hypothesis. First, biochemical and immunological analysis of deletion mutants of α-2 gliadin confirmed that the DQ2 restricted T cell response to the α-2 gliadin are directed towards the epitopes clustered within the 33-mer. Second, proteolytic analysis of a representative γ-gliadin led to the identification of another multivalent 26-mer peptide that was also resistant to further gastric, pancreatic and intestinal brush border degradation, and was a good substrate of human transglutaminase 2 (TG2). Analogous to the 33-mer, the synthetic 26-mer peptide displayed markedly enhanced T cell antigenicity compared to monovalent control peptides. Finally, in silico analysis of the gluten proteome led to the identification of at least 60 putative peptides that share the common characteristics of the 33-mer and the 26-mer peptides. Together, these results highlight the pivotal role of physiologically generated, proteolytically stable, TG2-reactive, multivalent peptides in the immune response to dietary gluten in Celiac Sprue patients. Prolyl endopeptidase treatment was shown to abolish the antigenicity of both the 33-mer and the 26-mer peptides, and was also predicted to have comparable effects on other proline-rich putatively immunotoxic peptides identified from other polypeptides within the gluten proteome.
Prolyl endopeptidases have potential for treating coeliac sprue, a disease of the intestine caused by proteolytically resistant peptides from proline-rich prolamins of wheat, barley and rye. We compared the properties of three similar bacterial prolyl endopeptidases, including the known enzymes from Flavobacterium meningosepticum (FM) and Sphingomonas capsulate (SC) and a novel enzyme from Myxococcus xanthus (MX). These enzymes were interrogated with reference chromogenic substrates, as well as two related gluten peptides (PQPQLPYPQPQLP and LQLQPFPQPQLPYPQPQLPYPQPQLPYPQPQPF), believed to play a key role in coeliac sprue pathogenesis. In vitro and in vivo studies were conducted to evaluate the activity, specificity and acid/protease stability of the enzymes. All peptidases were relatively resistant to acid, pancreatic proteases and membrane peptidases of the small intestinal mucosa. Although their activities against reference substrates were similar, the enzymes exhibited substantial differences with respect to chain length and subsite specificity. SC hydrolysed PQPQLPYPQPQLP well, but had negligible activity against LQLQPFPQPQLPYPQPQLPYPQPQLPYPQPQPF. In contrast, the FM and MX peptidases cleaved both substrates, although the FM enzyme acted more rapidly on LQLQPFPQPQLPYPQPQLPYPQPQLPYPQPQPF than MX. Whereas the FM enzyme showed a preference for Pro-Gln bonds, SC cleaved both Pro-Gln and Pro-Tyr bonds with comparable efficiency, and MX had a modest preference for Pro-(Tyr/Phe) sites over Pro-Gln sites. While a more comprehensive understanding of sequence and chain-length specificity may be needed to assess the relative utility of alternative prolyl endopeptidases for treating coeliac sprue, our present work has illustrated the diverse nature of this class of enzymes from the standpoint of proteolysing complex substrates such as gluten.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.