Grapevine (Vitis vinifera L.) is one of the most important crops worldwide but is subjected to multiple biotic and abiotic stresses, especially related to climate change. In this context, the grapevine culture could take advantage of symbiosis through association with arbuscular mycorrhizal fungi (AMF), which are able to establish symbiosis with most terrestrial plants. Indeed, it is well established that mycorrhization improves grapevine nutrition and resistance to stresses, especially water stress and resistance to root pathogens. Thus, it appears essential to understand the effect of mycorrhization on grapevine metabolism and defense responses. In this study, we combined a non-targeted metabolomic approach and a targeted transcriptomic study to analyze changes induced in both the roots and leaves of V. vinifera cv. Gewurztraminer by colonization with Rhizophagus irregularis (Ri). We showed that colonization of grapevine with AMF triggers major reprogramming of primary metabolism in the roots, especially sugar and fatty acid metabolism. On the other hand, mycorrhizal roots had decreased contents of most sugars and sugar acids. A significant increase in several fatty acids (C16:1, linoleic and linolenic acids and the C20 arachidonic and eicosapentaenoic acids) was also detected. However, a downregulation of the JA biosynthesis pathway was evidenced. We also found strong induction of the expression of PR proteins from the proteinase inhibitor (PR6) and subtilase (PR7) families in roots, suggesting that these proteins are involved in the mycorrhiza development but could also confer higher resistance to root pathogens. Metabolic changes induced by mycorrhization were less marked in leaves but involved higher levels of linoleic and linolenic acids and decreased sucrose, quinic, and shikimic acid contents. In addition, Ri colonization resulted in enhanced JA and SA levels in leaves. Overall, this study provides a detailed picture of metabolic changes induced by AMF colonization in a woody, economically important species. Moreover, stimulation of fatty acid biosynthesis and PR protein expression in roots and enhanced defense hormone contents in leaves establish first insight in favor of better resistance of grapevine to various pathogens provided by AMF colonization.
Virus infection of plants can result in various degrees of detrimental impacts and disparate symptom types and severities. Although great strides have been made in our understanding of the virus–host interactions in herbaceous model plants, the mechanisms underlying symptom development are poorly understood in perennial fruit crops. Grapevine fanleaf virus (GFLV) causes variable symptoms in most vineyards worldwide. To better understand GFLV-grapevine interactions in relation to symptom development, field and greenhouse trials were conducted with a grapevine genotype that exhibits distinct symptoms in response to a severe and a mild strain of GFLV. After validation of the infection status of the experimental vines by high-throughput sequencing, the transcriptomic and metabolomic profiles in plants infected with the two viral strains were tested and compared by RNA-Seq and LC-MS, respectively, in the differentiating grapevine genotype. In vines infected with the severe GFLV strain, 1023 genes, among which some are implicated in the regulation of the hypersensitive-type response, were specifically deregulated, and a higher accumulation of resveratrol and phytohormones was observed. Interestingly, some experimental vines restricted the virus to the rootstock and remained symptomless. Our results suggest that GFLV induces a strain- and cultivar-specific defense reaction similar to a hypersensitive reaction. This type of defense leads to a severe stunting phenotype in some grapevines, whereas others are resistant. This work is the first evidence of a hypersensitive-like reaction in grapevine during virus infection.
Avirulence factors are critical for the arm's race between a virus and its host in determining incompatible reactions. The response of plants to viruses from the genus Nepovirus in the family Secoviridae, including Grapevine fanleaf virus (GFLV), is well characterized, although the nature and characteristics of the viral avirulence factor remain elusive. By using infectious clones of GFLV strains F13 and GHu in a reverse genetics approach with wild-type, assortant and chimeric viruses, the determinant of necrotic lesions caused by GFLV-F13 on inoculated leaves of Nicotiana occidentalis was mapped to the RNA2-encoded protein 2A , particularly to its 50 C-terminal amino acids. The necrotic response showed hallmark characteristics of a genuine hypersensitive reaction, such as the accumulation of phytoalexins, reactive oxygen species, pathogenesis-related protein 1c and hypersensitivity-related (hsr) 203J transcripts. Transient expression of the GFLV-F13 protein 2A fused to an enhanced green fluorescent protein (EGFP) tag in N. occidentalis by agroinfiltration was sufficient to elicit a hypersensitive reaction. In addition, the GFLV-F13 avirulence factor, when introduced in GFLV-GHu, which causes a compatible reaction on N. occidentalis, elicited necrosis and partially restricted the virus. This is the first identification of a nepovirus avirulence factor that is responsible for a hypersensitive reaction in both the context of virus infection and transient expression.
Fanleaf degeneration is a complex viral disease of Vitis spp. that detrimentally impacts fruit yield and reduces the productive lifespan of most vineyards worldwide. In France, its main causal agent is grapevine fanleaf virus (GFLV). In the past, field experiments were conducted to explore cross-protection as a management strategy of fanleaf degeneration, but results were unsatisfactory because the mild virus strain negatively impacted fruit yield. In order to select new mild GFLV isolates, we examined two old ‘Chardonnay’ parcels harbouring vines with distinct phenotypes. Symptoms and agronomic performances were monitored over the four-year study on 21 individual vines that were classified into three categories: asymptomatic GFLV-free vines, GFLV-infected vines severely diseased and GFLV-infected vines displaying mild symptoms. The complete coding genomic sequences of GFLV isolates in infected vines was determined by high-throughput sequencing. Most grapevines were infected with multiple genetically divergent variants. While no specific molecular features were apparent for GFLV isolates from vines displaying mild symptoms, a genetic differentiation of GFLV populations depending on the vineyard parcel was observed. The mild symptomatic grapevines identified during this study were established in a greenhouse to recover GFLV variants of potential interest for cross-protection studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.