Gadolinium-based contrast agents (CAs) are widely used to enhance the contrast of images in magnetic resonance imaging procedures. Two categories of gadolinium chelates exist: the macrocyclic molecules where Gd3+ is caged in the pre-organized cavity of the ligand and the linear molecules. Gadolinium chelates differ in their thermodynamic stability constants and in their kinetic stability. In general, macrocyclic chelates such as Gd-DOTA or Gd-HP-DO3A are more stable than linear molecules. Even among linear agents, differences can be found. There is increasing evidence that transmetallation can be found in vivo, in the case of certain CAs (especially linear chelates), with body cations such as zinc, calcium or iron. Furthermore, analytical interference with colorimetric determination of calcium has been clinically evidenced with two linear chelates, Gd-DTPA-BMA and Gd-DTPA-BMEA. Clinical cases of spurious hypocalcaemia have been reported with these molecules. Such interference with some colorimetric assays for calcium is clinically relevant in that it can lead to unnecessary and potentially harmful treatment for hypocalcaemia.
Competition experiments indicate that the cellular uptake of Ferumoxides involves scavenger receptor SR-A-mediated endocytosis. The comparison between Ferumoxides and Ferumoxtran-10 confirms that macrophage uptake of iron oxide nanoparticles depends mainly on the size of these contrast agents.
Objectives We aimed to evaluate gadopiclenol, a newly developed extracellular nonspecific macrocyclic gadolinium-based contrast agent (GBCA) having high relaxivity properties, which was designed to increase lesion detection and characterization by magnetic resonance imaging. Methods We described the molecular structure of gadopiclenol and measured the r 1 and r 2 relaxivity properties at fields of 0.47 and 1.41 T in water and human serum. Nuclear magnetic relaxation dispersion profile measurements were performed from 0.24 mT to 7 T. Protonation and complexation constants were determined using pH-metric measurements, and we investigated the acid-assisted dissociation of gadopiclenol, gadodiamide, gadobutrol, and gadoterate at 37°C and pH 1.2. Applying the relaxometry technique (37°C, 0.47 T), we investigated the risk of dechelation of gadopiclenol, gadoterate, and gadodiamide in the presence of ZnCl 2 (2.5 mM) and a phosphate buffer (335 mM). Pharmacokinetics studies of radiolabeled 153 Gd-gadopiclenol were performed in Beagle dogs, and protein binding was measured in rats, dogs, and humans plasma and red blood cells. Results Gadopiclenol [gadolinium chelate of 2,2′,2″-(3,6,9-triaza-1(2,6)-pyridinacyclodecaphane-3,6,9-triyl)tris(5-((2,3-dihydroxypropyl)amino)-5-oxopentanoic acid); registry number 933983-75-6] is based on a pyclen macrocyclic structure. Gadopiclenol exhibited a very high relaxivity in water (r 1 = 12.2 mM −1 ·s −1 at 1.41 T), and the r 1 value in human serum at 37°C did not markedly change with increasing field (r 1 = 12.8 mM −1 ·s −1 at 1.41 T and 11.6 mM −1 ·s −1 at 3 T). The relaxivity data in human serum did not indicate protein binding. The nuclear magnetic relaxation dispersion profile of gadopiclenol exhibited a high and stable relaxivity in a strong magnetic field. Gadopiclenol showed high kinetic inertness under acidic conditions, with a dissociation half-life of 20 ± 3 days compared with 4 ± 0.5 days for gadoterate, 18 hours for gadobutrol, and less than 5 seconds for gadodiamide and gadopentetate. The pharmacokinetic profile in dogs was typical of extracellular nonspecific GBCAs, showing distribution in the extracellular compartment and no metabolism. No protein binding was found in rats, dogs, and humans. Conclusions Gadopiclenol is a new extracellular and macrocyclic Gd chelate that exhibited high relaxivity, no protein binding, and high kinetic inertness. Its pharmacokinetic profile in dogs was similar to that of other extracellular nonspecific GBCAs.
The relaxivity of P792 at clinical field is very high for a monogadolinium complex without protein binding. The pharmacokinetic and biodistribution profiles are consistent with those of a rapid-clearance blood-pool agent. Its initial safety profile is satisfactory. Experimental and clinical studies are underway to confirm the potential of P792 in MRI.
An original MRI contrast agent, called P792, is described. P792 is a gadolinium macrocyclic compound based on a Gd-DOTA structure substituted by hydrophilic arms. The chemical structure of P792 has been optimized in order to provide (1) a high r(1) relaxivity in the clinical field for MRI: 29 mM(-1)xs(-1) at 60 MHz, (2) a high biocompatibility profile and (3) a high molecular volume: the apparent hydrodynamic volume of P792 is 125 times greater than that of Gd-DOTA. As a result of this high molecular volume, P792 presents an unusual pharmacokinetic profile, as it is a Rapid Clearance Blood Pool Agent (RCBPA) characterized by limited diffusion across the normal endothelium. The original pharmacokinetic properties of this RCBPA are expected to be well suited to MR coronary angiography, angiography, perfusion imaging (stress and rest), and permeability imaging (detection of ischemia and tumor grading). Further experimental imaging studies are ongoing to define the clinical value of this compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.