Despite recent improvements in sequencing methods, there remains a need for assays that provide high sequencing depth and comprehensive variant detection. Current methods 1 - 4 are limited by the loss of native modifications, short read length, high input requirements, low yield, or long protocols. Here, we describe nanopore Cas9-targeted sequencing (nCATS), an enrichment strategy that uses targeted cleavage of chromosomal DNA with Cas9 to ligate adaptors for nanopore sequencing. We show that nCATS can simultaneously assess haplotype-resolved single-nucleotide variants (SNVs), structural variations (SVs) and CpG methylation. We apply nCATS to four cell lines, a cell-line-derived xenograft, and normal and paired tumor/normal primary human breast tissue. Median sequencing coverage was 675X using a minION flow cell and 34X using the smaller flongle flow cell. nCATS requires only ~3μg of genomic DNA and can target a large number of loci in a single reaction. The method will facilitate the use of long-read sequencing in research and in the clinic.
Probing epigenetic features on DNA has tremendous potential to advance our understanding of the phased epigenome. In this study, we use nanopore sequencing to evaluate CpG methylation and chromatin accessibility simultaneously on long strands of DNA by applying GpC methyltransferase to exogenously label open chromatin. We performed nanopore sequencing of Nucleosome Occupancy and Methylome (nanoNOMe) on four human cell lines (GM12878, MCF-10A, MCF-7, MDA-MB-231). The single-molecule resolution allows footprinting of protein and nucleosome binding and determining the combinatorial promoter epigenetic signature on individual molecules. Long-read sequencing makes it possible to robustly assign reads to haplotypes, allowing us to generate the first fully phased human epigenome, consisting of chromosome-level allele-specific profiles of CpG methylation and chromatin accessibility. We further apply this to a breast cancer model to evaluate differential methylation and accessibility between cancerous and non-cancerous cells.
Nanopore sequencing technology can rapidly and directly interrogate native DNA molecules. Often we are interested only in interrogating specific areas at high depth, but conventional enrichment methods have thus far proved unsuitable for long reads 1 . Existing strategies are currently limited by high input DNA requirements, low yield, short (<5kb) reads, time-intensive protocols, and/or amplification or cloning (losing base modification information). In this paper, we describe a technique utilizing the ability of Cas9 to introduce cuts at specific locations and ligating nanopore sequencing adaptors directly to those sites, a method we term 'nanopore Cas9 Targeted-Sequencing' (nCATS).We have demonstrated this using an Oxford Nanopore MinION flow cell (Capacity >10Gb+) to generate a median 165X coverage at 10 genomic loci with a median length of 18kb, representing a several hundred-fold improvement over the 2-3X coverage achieved without enrichment. We performed a pilot run on the smaller Flongle flow cell (Capacity ~1Gb), generating a median coverage of 30X at 11 genomic loci with a median length of 18kb. Using panels of guide RNAs, we show that the high coverage data from this method enables us to (1) profile DNA methylation patterns at cancer driver genes, (2) detect structural variations at known hot spots, and (3) survey for the presence of single nucleotide mutations. Together, this provides a low-cost method that can be applied even in low resource settings to directly examine cellular DNA. This technique has extensive clinical applications for assessing medically relevant genes and has the versatility to be a rapid and comprehensive diagnostic tool. We demonstrate applications of this technique by examining the well-characterized GM12878 cell line as well as three breast cell lines (MCF-10A, MCF-7, MDA-MB-231) with varying tumorigenic potential as a model for cancer. ContributionsTG and WT constructed the study. TG performed the experiments. TG, IL, and FS analyzed the data. TG, JG, ER, RB and AH and developed the method. TG and WT wrote the paper
Improved identification of structural variants (SVs) in cancer can lead to more targeted and effective treatment options as well as advance our basic understanding of the disease and its progression. We performed whole-genome sequencing of the SKBR3 breast cancer cell line and patient-derived tumor and normal organoids from two breast cancer patients using Illumina/10x Genomics, Pacific Biosciences (PacBio), and Oxford Nanopore Technologies (ONT) sequencing. We then inferred SVs and large-scale allele-specific copy number variants (CNVs) using an ensemble of methods. Our findings show that long-read sequencing allows for substantially more accurate and sensitive SV detection, with between 90% and 95% of variants supported by each long-read technology also supported by the other. We also report high accuracy for long reads even at relatively low coverage (25×–30×). Furthermore, we integrated SV and CNV data into a unifying karyotype-graph structure to present a more accurate representation of the mutated cancer genomes. We find hundreds of variants within known cancer-related genes detectable only through long-read sequencing. These findings highlight the need for long-read sequencing of cancer genomes for the precise analysis of their genetic instability.
Barium titanate nanoparticles (BT NP) belong to a class of second harmonic generating (SHG) nanoprobes that have recently demonstrated promise in biological imaging. Unfortunately, BT NPs display low cellular uptake efficiencies, which may be a problem if cellular internalization is desired or required for a particular application. To overcome this issue, while concomitantly developing a particle platform that can also deliver nucleic acids into cells, we coated the BT NPs with the cationic polymer polyethylenimine (PEI) – one of the most effective nonviral gene delivery agents. Coating of BT with PEI yielded complexes with positive zeta potentials and resulted in an 8-fold increase in cellular uptake of the BT NPs. Importantly, we were able to achieve high levels of gene delivery with the BT-PEI/DNA complexes, supporting further efforts to generate BT platforms for coupled imaging and gene therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.