Drug resistance represents one of the greatest challenges in cancer treatment. Cancer stem cells (CSCs), a subset of cells within the tumor with the potential for self-renewal, differentiation and tumorigenicity, are thought to be the major cause of cancer therapy failure due to their considerable chemo- and radioresistance, resulting in tumor recurrence and eventually metastasis. CSCs are situated in a specialized microenvironment termed the niche, mainly composed of fibroblasts and endothelial, mesenchymal and immune cells, which also play pivotal roles in drug resistance. These neighboring cells promote the molecular signaling pathways required for CSC maintenance and survival and also trigger endogenous drug resistance in CSCs. In addition, tumor niche components such as the extracellular matrix also physically shelter CSCs from therapeutic agents. Interestingly, CSCs contribute directly to the niche in a bilateral feedback loop manner. Here, we review the recent advances in the study of CSCs, the niche and especially their collective contribution to resistance, since increasingly studies suggest that this interaction should be considered as a target for therapeutic strategies.
Over the past few decades, si RNA and mi RNA have attracted a great deal of attention from researchers and clinicians. These molecules have been extensively studied from the standpoint of developing biopharmaceuticals against various diseases, including heart disease, diabetes and cancers. si RNA suppresses only a single target, whereas each mi RNA regulates the expression of multiple target genes. More importantly, because mi RNA are also secreted from cancer cells, and their aberrant expression is associated with tumor development and progression, they represent not only therapeutic targets but also promising biomarkers for diagnosis and prognosis. Therefore, mi RNA may be more effective tools against cancers, in which multiple signal pathways are dysregulated. In this review, we summarize recent progress in the development of mi RNA therapeutics for the treatment of cancer patients, and describe delivery systems for oligonucleotide therapeutics.
Sarcomas are rare solid tumors, but at least one-third of patients with sarcoma die from tumor-related disease. MicroRNA (miRNA) is a noncoding RNA that regulates gene expression in all cells and plays a key role in the progression of cancers. Recently, it was identified that miRNAs are transferred between cells by enclosure in extracellular vesicles, especially exosomes. The exosome is a 100 nm-sized membraned vesicle that is secreted by many kinds of cells and contains miRNA, mRNA, DNA, and proteins. Cancer uses exosomes to influence not only the tumor microenvironment but also the distant organ to create a premetastatic niche. The progression of sarcoma is also regulated by miRNAs and exosomes. These miRNAs and exosomes can be targeted as biomarkers and treatments. In this review, we summarize the studies of miRNA and exosomes in sarcoma.
Management of patients with bone sarcoma who are unsuitable for surgery is challenging. We aimed to analyze the clinical outcomes among such patients who were treated with carbon ion radiotherapy (C-ion RT). We reviewed the medical records of the patients treated with C-ion RT between April 2011 and February 2019 and analyzed the data of 53 patients. Toxicities were classified using the National Cancer Institute’s Common Terminology Criteria for Adverse Events (Version 4.0). The median follow-up duration for all patients was 36.9 months. Histologically, 32 patients had chordoma, 9 had chondrosarcoma, 8 had osteosarcoma, 3 had undifferentiated pleomorphic sarcoma, and 1 had sclerosing epithelioid fibrosarcoma. The estimated 3-year overall survival (OS), local control (LC), and progression-free survival (PFS) rates were 79.7%, 88.6%, and 68.9%, respectively. No patients developed grade 3 or higher acute toxicities. Three patients developed both grade 3 radiation dermatitis and osteomyelitis, one developed both grade 3 radiation dermatitis and soft tissue infection, and one developed rectum-sacrum-cutaneous fistula. C-ion RT showed favorable clinical outcomes in terms of OS, LC, and PFS and low rates of toxicity in bone sarcoma patients. These results suggest a potential role for C-ion RT in the management of this population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.