Cancer-associated fibroblasts (CAFs), one of the major components of a tumour microenvironment, comprise heterogeneous populations involved in tumour progression. However, it remains obscure how CAF heterogeneity is governed by cancer cells. Here, we show that cancer extracellular vesicles (EVs) induce a series of chemokines in activated fibroblasts and contribute to the formation of the heterogeneity. In a xenograft model of diffuse-type gastric cancer, we showed two distinct fibroblast subpopulations with alpha-smooth muscle actin (α-SMA) expression or chemokine expression. MicroRNAs (miRNAs) profiling of the EVs and the transfection experiment suggested that several miRNAs played a role in the induction of chemokines such as CXCL1 and CXCL8 in fibroblasts, but not for the myofibroblastic differentiation. Clinically, aberrant activation of CXCL1 and CXCL8 in CAFs correlated with poorer survival in gastric cancer patients. Thus, this link between chemokine expression in CAFs and tumour progression may provide novel targets for anticancer therapy.
Over the past few decades, si
RNA
and mi
RNA
have attracted a great deal of attention from researchers and clinicians. These molecules have been extensively studied from the standpoint of developing biopharmaceuticals against various diseases, including heart disease, diabetes and cancers. si
RNA
suppresses only a single target, whereas each mi
RNA
regulates the expression of multiple target genes. More importantly, because mi
RNA
are also secreted from cancer cells, and their aberrant expression is associated with tumor development and progression, they represent not only therapeutic targets but also promising biomarkers for diagnosis and prognosis. Therefore, mi
RNA
may be more effective tools against cancers, in which multiple signal pathways are dysregulated. In this review, we summarize recent progress in the development of mi
RNA
therapeutics for the treatment of cancer patients, and describe delivery systems for oligonucleotide therapeutics.
BackgroundAcquisition of drug-resistance in cancer has led to treatment failure, however, their mechanisms have not been clarified yet. Recent observations indicated that aberrant expressed microRNA (miRNA) caused by chromosomal alterations play a critical role in the initiation and progression of cancer. Here, we performed an integrated genomic analysis combined with array-based comparative hybridization, miRNA, and gene expression microarray to elucidate the mechanism of drug-resistance.ResultsThrough genomic approaches in MCF7-ADR; a drug-resistant breast cancer cell line, our results reflect the unique features of drug-resistance, including MDR1 overexpression via genomic amplification and miRNA-mediated TP53INP1 down-regulation. Using a gain of function study with 12 miRNAs whose expressions were down-regulated and genome regions were deleted, we show that miR-505 is a novel tumor suppressive miRNA and inhibits cell proliferation by inducing apoptosis. We also find that Akt3, correlate inversely with miR-505, modulates drug sensitivity in MCF7-ADR.ConclusionThese findings indicate that various genes and miRNAs orchestrate to temper the drug-resistance in cancer cells, and thus acquisition of drug-resistance is intricately controlled by genomic status, gene and miRNA expression changes.
Drug resistance is a major obstacle in the treatment of breast cancer. Surviving cells lead to tumor recurrence and metastasis, which remains the main cause of cancer-related mortality. Breast cancer is also highly heterogeneous, which hinders the identification of individual cells with the capacity to survive anticancer treatment. To address this, we performed extensive single-cell gene-expression profiling of the luminal-type breast cancer cell line MCF7 and its derivatives, including docetaxel-resistant cells. Upregulation of epithelial-to-mesenchymal transition and stemness-related genes and downregulation of cell-cycle-related genes, which were mainly regulated by LEF1, were observed in the drug-resistant cells. Interestingly, a small number of cells in the parental population exhibited a gene-expression profile similar to that of the drug-resistant cells, indicating that the untreated parental cells already contained a rare subpopulation of stem-like cells with an inherent predisposition toward docetaxel resistance. Our data suggest that during chemotherapy, this population may be positively selected, leading to treatment failure. Significance: This study highlights the role of breast cancer intratumor heterogeneity in drug resistance at a single-cell level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.