Oligomerization, conformational changes, and the consequent neurodegeneration of Alzheimer's β-amyloid protein (AβP) play crucial roles in the pathogenesis of Alzheimer's disease (AD). Mounting evidence suggests that oligomeric AβPs cause the disruption of calcium homeostasis, eventually leading to neuronal death. We have demonstrated that oligomeric AβPs directly incorporate into neuronal membranes, form cation-sensitive ion channels (“amyloid channels”), and cause the disruption of calcium homeostasis via the amyloid channels. Other disease-related amyloidogenic proteins, such as prion protein in prion diseases or α-synuclein in dementia with Lewy bodies, exhibit similarities in the incorporation into membranes and the formation of calcium-permeable channels. Here, based on our experimental results and those of numerous other studies, we review the current understanding of the direct binding of AβP into membrane surfaces and the formation of calcium-permeable channels. The implication of composition of membrane lipids and the possible development of new drugs by influencing membrane properties and attenuating amyloid channels for the treatment and prevention of AD is also discussed.
A new, efficient synthesis of oligosaccharides, which involves solid-phase reactions without mixing in combination with an orthogonal-glycosylation strategy, is described. Despite a great deal of biological interest, the combinatorial chemistry of oligosaccharides is an extremely difficult subject. The problems include 1) lengthy synthetic protocols required for the synthesis and 2) the variety of glycosylation conditions necessary for individual reactions. These issues were addressed and solved by using the orthogonal-coupling protocol and the application of a temperature gradient to provide appropriate conditions for individual reactions. Furthermore, we succeeded in carrying out solid-phase reactions with neither mechanical mixing nor flow. In this report, the synthesis of a series of trisaccharides, namely, alpha/beta-L-Fuc-(1-->6)-alpha/beta-D-Gal-(1-->2/3/4/6)-alpha/beta-D-Glc-octyl, is reported to demonstrate the eligibility of the synthetic method in combinatorial chemistry.
Glycans, a family of compounds often attached to proteins and ceramides, are diverse molecules involved in a wide range of biological functions. Their structural analysis is necessary and is often carried out at the microscale level. Methods based on mass spectrometry are therefore used, although they do not provide information regarding isomeric structures often found in glycan structures. If one finds "factors" characteristic of a certain isomer, this information can be used to elucidate an unknown oligosaccharide sequence. One potential technique is to use energy-resolved mass spectrometry (ERMS) that has been used to distinguish a pair of isomeric compounds. Thus, compounds in a combinatorial library might be effectively used for this purpose. We analyzed a set of 16 isomeric disaccharides, the structures of which consisted of all possible combinations of anomeric configurations and interglycosidic linkage positions. All of the compounds were distinguished based on ERMS where normal collision-induced dissociation could distinguish only seven compounds. Furthermore, it was shown that ␣-glycosidic linkages of fucose were more reactive than the ␣ -isomers and the secondary glycosides were more reactive than the primary . The structural characteristics of oligosaccharides are quite different from those of other biopolymers such as nucleic acids and peptides. The diversity is generated from sequential combination in the latter two types of polymers, whereas anomers, ring size, linkage position, branching, and sequence are factors in the case of oligosaccharides [2]. Furthermore, the regulatory mechanisms for oligosaccharides still need to be clarified and synthesis, which is not template dependent, thus creates further molecular diversity called glycoforms. Despite the difficulties encountered in structural determination, there are reports on how glycosylation as a type of posttranslational modification (PTM) of protein affects glycoprotein secretion [3,4].
We have previously shown glycosphingolipids of Ascaris suum to have phosphorylcholine (PC) and non-PC immunomodulatory moieties. In the present study we further investigated the nature of the immunomodulatory moieties by employing three synthetic glycosphingolipids each possessing features of the original molecule to examine effects on macrophage and dendritic cell (DC) cytokine production and surface co-stimulatory molecule expression. Compound 2, which lacked PC but contained ceramide, had no effect on either macrophages or DCs. Surprisingly however, Compound 1, which contained PC and hence arguably most resembled the native material, had, with the exception of a small increase in surface antigen expression, no immunomodulatory properties. Conversely, Compound 3, which contained PC but was otherwise least like the native molecule, demonstrated a number of effects on both macrophages and DCs, including induction of Th-1/pro-inflammatory cytokines, inhibition of such cytokines induced by IFN-gamma/LPS and increased expression of co-stimulatory molecules. Taken together these results indicate: (i) that although PC is an immunomodulatory component of the native molecule other structural feature are necessary to allow it to act; (ii) that carbohydrate rather than ceramide is likely to represent a non-PC immunomodulatory moiety; and (iii) that synthetic PC-containing molecules have the potential to act as immunomodulatory drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.