We study the evolution of various types of biased domain wall networks in the early universe. We carry out larger numerical simulations than currently available in the literature and provide a more detailed study of the decay of these networks, in particular by explicitly measuring velocities in the simulations. We also use the larger dynamic range of our simulations to test previously suggested decay laws for these networks, including an ad-hoc phenomenological fit to earlier simulations and a decay law obtained by Hindmarsh through analytic arguments. We find the latter to be in good agreement with simulations in the case of a biased potential, but not in the case of biased initial conditions.
Jumping ability is considered a determinant of performance success. It is identified as one of the predictors and talent identification in many sports and dance. This study aimed to investigate the effect of 16 weeks of lower-limb strength training on the jumping performance of ballet dancers. A total of 24 participants from the same dance school were randomly selected in the control group [CG; n = 10; aged 13.00 (1.49) years; 43.09 (9.48) kg and 1.53 (0.11) m] and the intervention group [IG; n = 14; aged 12.43 (1.45) years; 38.21 (4.38) kg and 1.51 (0.07) m], evaluated before and after the applied strength training program mainly using the body weight of each participant. Jump performance was assessed using MyJump2, a scientifically validated mobile phone app. Intergroup and intragroup comparisons were assessed, and the magnitude of change was calculated using the effect size (ES). While CG significantly decreased the relative power over time (p < 0.001, ES = −0.29: small), results from the intragroup comparisons suggest that IG significantly increased the countermovement jump (CMJ) height (p < 0.001, ES = 1.21: large), the relative force (p < 0.001, ES = 0.86: moderate), maximal velocity (p < 0.001, ES = 1.15: moderate), and relative power (p < 0.001, ES = 1.37: large). We concluded that a 16-week strength training program of lower limbs is an effective way to improve CMJ height in young dancers. Supplementary strength training appears to be the determinant for the improvement of the jumping performance of ballet dancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.