Purpose: Ballet dancers are required to achieve performance feats such as exciting and dramatic elevations. Dancers with a greater jump height can perform a wider range of skills during their flight time and implement more specific technical skills related to the aesthetic components of a dance choreography. New findings suggest the relationship between force and velocity mechanical capabilities (F-V profile) as an important variable for jumping performance. A new field method based on several series of loaded vertical jumps provides information on the theoretical maximal force, theoretical maximal velocity, theoretical maximal power, and the imbalance between force and velocity (F-VIMB). The purpose of this study was to observe the effects of 9 wk of individualized F-V profile-based training during countermovement jumps (CMJs) in female ballet dancers. Methods: CMJ and mechanical outputs of 46 dancers (age = 18.9 [1.1] y, body mass = 54.8 [6.1] kg, height = 163.7 [8.4] cm) were estimated in a pre–post intervention. The control group (10 participants) continued with the standardized training regimen (no resistance training), whereas the experimental group (36 participants) performed 2 sessions over 9 wk of a training plan based on their F-V profile. Results: The experimental group presented significant differences with large effect sizes in CMJ height (29.3 [3.2] cm vs 33.5 [3.72] cm), theoretical maximal force (24.1 [2.2] N/kg vs 29.9 [2.8] N/kg), and theoretical maximal velocity (4 [0.6] m/s vs 3.2 [0.5] m/s). Significant differences with a very large effect size were found in F-VIMB (43.8% [15.3%] vs 24.9% [8.7%]). Conclusion: A training program addressing F-VIMB is an effective way to improve CMJ height in female ballet dancers.
Jumping ability has been identified as one of the best predictors of dance performance. The latest findings in strength and conditioning research suggest that the relationship between force and velocity mechanical capabilities, known as the force-velocity profile, is a relevant parameter for the assessment of jumping ability. In addition, previous investigations have suggested the existence of an optimal force-velocity profile for each individual that maximizes jump performance. Given the abundance of ballistic actions in ballet (e.g., jumps and changes of direction), quantification of the mechanical variables of the force-velocity profile could be beneficial for dancers as a guide to specific training regimens that can result in improvement of either maximal force or velocity capabilities. The aim of this study was to compare the mechanical variables of the force-velocity profile during jumping in different company ranks of ballet dancers. Eighty-seven female professional ballet dancers (age: 18.94 ± 1.32 years; height: 164.41 ± 8.20 cm; weight: 56.3 ± 5.86 kg) showed high force deficits (> 40%) or low force deficits (10% to 40%) regardless of their company rank. Our results suggest that dance training mainly develops velocity capabilities, and due to the high number of dramatic elevations that dance performance requires, supplemental individualized force training may be beneficial for dancers. The individualization of training programs addressed to the direction of each individual's imbalance (high force or low force) could help dancers and their teachers to improve jump height and therefore dance performance.
This study aimed to observe the effect of 8 weeks of resisted sled training (RST), with optimal loading for maximal power output production and initial levels of force, on the magnitude of improvement in sprint performance and individual sprint mechanical outputs in female amateur rugby union players. The study examined the horizontal Power-Force-Velocity profile (P-F-V profile), which provides a measure of the athlete's individual balance between force and velocity capabilities (S fv ), theoretical maximum force (F 0 ), theoretical maximum velocity (V 0 ), maximum power (P max ), the maximum ratio of force (Rf max ) and rate of decrease in ratio of force (D rf ). Thirty-one participants (age = 23.7 ± 3.3years, BM = 69 ± 9Kg, height = 167.5 ± 5.2 cm) were divided into a control group and two experimental groups; forwards (FG) and backs (BG). For 8 consecutive weeks (16 sessions), all groups performed the same training programme: 2 sets of 5 × 30 m, but athletes assigned to FG and BG ran towing a resisted sled attached to their waists, with optimal loading for maximal power output production. Both FG and BG significantly improved (p ≤ 0.05) in 5 and 20 m sprint performance, and in the mechanical properties related to the horizontal P-F-V profile. The correlation between the initial level of horizontal strength and the magnitude of improvement in P max also suggests that higher levels of horizontal force may lead to greater adaptations in RST. The P-F-V profile is a useful field method for identifying the weakest mechanical variable in rugby players during sprinting and enabling the prescription of individualized training programmes according to specific running performance.
Netball is a collective sport characterized by intermittent high-intensity actions. Therefore, the players must develop high levels of relative bilateral and unilateral strength and power for both improve performance and also reduce injury risk. The purpose of this study was (i) to provide a reference about the mechanical outputs obtained in the vertical (jumping) and horizontal force-velocity-power (FVP) profile and (ii) observe their relationship, besides the performance in jumping and sprinting in amateur female netball players (age = 24.3 ± 3.2 years, BM = 64.5 ± 5 Kg, height = 172.5 ± 6.2 cm). The variables for both FVP profiles (theoretical maximal force (F0), theoretical maximal velocity (V0) and theoretical maximal power output (Pmax)) were measured with two scientifically validated apps for iOS (My Jump 2 and My Sprint). Our results in regards to the vertical FVP suggest that netball players have low force deficit (36.2 ± 14.6%) and individualized training based on F-V profiling could be beneficial to address their deficit. The moderate correlations found for performance, V0 and Pmax suggest that the improvement in one of the skills (jumping or sprinting) may produce some positive adaptation to the other. However, no association was found in the force production (F0) of the lower limbs for both FVP. Therefore, we recommend that netball players must train specifically ballistic actions in the vertical (jumping) and horizontal direction (sprinting) due to the specificity of both skills and the consequent impact of them on netball performance.
Jumping ability is considered a determinant of performance success. It is identified as one of the predictors and talent identification in many sports and dance. This study aimed to investigate the effect of 16 weeks of lower-limb strength training on the jumping performance of ballet dancers. A total of 24 participants from the same dance school were randomly selected in the control group [CG; n = 10; aged 13.00 (1.49) years; 43.09 (9.48) kg and 1.53 (0.11) m] and the intervention group [IG; n = 14; aged 12.43 (1.45) years; 38.21 (4.38) kg and 1.51 (0.07) m], evaluated before and after the applied strength training program mainly using the body weight of each participant. Jump performance was assessed using MyJump2, a scientifically validated mobile phone app. Intergroup and intragroup comparisons were assessed, and the magnitude of change was calculated using the effect size (ES). While CG significantly decreased the relative power over time (p < 0.001, ES = −0.29: small), results from the intragroup comparisons suggest that IG significantly increased the countermovement jump (CMJ) height (p < 0.001, ES = 1.21: large), the relative force (p < 0.001, ES = 0.86: moderate), maximal velocity (p < 0.001, ES = 1.15: moderate), and relative power (p < 0.001, ES = 1.37: large). We concluded that a 16-week strength training program of lower limbs is an effective way to improve CMJ height in young dancers. Supplementary strength training appears to be the determinant for the improvement of the jumping performance of ballet dancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.