Pseudocapacitive materials are used for supercapacitor applications due to their exceptionally high capacitance and low cost. Good capacitive performance of the pseudocapacitive materials at high active mass loadings is vital for the development of the next generation of supercapacitor devices. This review describes recent advances in materials and nanotechnologies, which allows the development of advanced pseudocapacitive devices with high active mass. An important breakthrough is the discovery of novel dispersing and capping agents for the colloidal processing of nanoparticles. Particularly important are novel co‐dispersants that exhibit enhanced adsorption on materials of different types, such as inorganic nanoparticles, carbon nanotubes, and graphene. Conceptually new strategies are designed to fabricate coated particles. Recent innovations pave the way for the development of multifunctional redox‐active dopants‐dispersants and dopants‐oxidants to manufacture conductive polymer composites. Among the most important advances in nanotechnology is the development of template methods and heterocoagulation techniques for composite manufacturing. The progress in the design of novel surface modification techniques and materials, discovery of advanced anchoring groups, and development of liquid–liquid extraction allows agglomerate‐free processing of nanomaterials and composites. This review describes fundamental aspects of novel technologies and their applications in the manufacturing of pseudocapacitive devices for energy storage.
Recent research on the origin of brain cancer has implicated a subpopulation of self-renewing brain cancer stem cells for malignant tumour growth. Various genes that regulate self-renewal in normal stem cells are also found in cancer stem cells. This implies that cancers can occur because of mutations in normal stem cells and early progenitor cells. A predictive mathematical model based on the cell compartment method is presented here to pose and validate non-intuitive scenarios proposed through the neural cancer stem cell hypothesis. The growths of abnormal (stem and early progenitor) cells from their normal counterparts are ascribed with separate mutation probabilities. Stem cell mutations are found to be more significant for the development of cancer than a similar mutation in the early progenitor cells. The model also predicts that, as previously hypothesized, repeated insult to mature cells increases the formation of abnormal progeny, and hence the risk of cancer.
An explanation for the effective thermal resistance RK can be based on the impedance to the passage of thermal phonons across an interface. We conjecture that (1) increasing the fluid pressure, and (2) making an interface more hydrophilic should facilitate better acoustic matching and thus lower RK. Our molecular dynamics simulations confirm this. Overall, RK decreases with increasing temperature and is inversely proportional to the heat flux.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.