Surface tension driven transport of liquids on open substrates offers an enabling tool for open micro total analysis systems that are becoming increasingly popular for low-cost biomedical diagnostic devices. The present study uses a facile wettability patterning method to produce open microfluidic tracks that - due to their shape, surface texture and chemistry - are capable of transporting a wide range of liquid volumes (~1-500 μL) on-chip, overcoming viscous and other opposing forces (e.g., gravity) at the pertinent length scales. Small volumes are handled as individual droplets, while larger volumes require repeated droplet transport. The concept is developed and demonstrated with coatings based on TiO2 filler particles, which, when present in adequate (~80 wt.%) quantities within a hydrophobic fluoroacrylic polymer matrix, form composites that are intrinsically superhydrophobic. Such composite coatings become superhydrophilic upon exposure to UV light (390 nm). A commercial laser printer-based photo-masking approach is used on the coating for spatially selective wettability conversion from superhydrophobic to superhydrophilic. Carefully designed wedge-patterned surface tension confined tracks on the open-air devices move liquid on them without power input, even when acting against gravity. Simple designs of wettability patterning are used on versatile substrates (e.g., metals, polymers, paper) to demonstrate complex droplet handling tasks, e.g., merging, splitting and metered dispensing, some of which occur in 3-D geometries. Fluid transport rates of up to 350 μL s(-1) are attained. Applicability of the design on metal substrates allows these devices to be used also for other microscale engineering applications, e.g., water management in fuel cells.
Among numerous challenges to meet the rising global energy demand in a sustainable manner, improving phase change heat transfer has been at the forefront of engineering research for decades. The high heat transfer rates associated with phase change heat transfer are essential to energy and industry applications; but phase change is also inherently associated with poor thermodynamic efficiencies at low heat flux, and violent instabilities at high heat flux. Engineers have tried since the 1930's to fabricate solid surfaces that improve phase change heat transfer. The development of micro and nanotechnologies has made feasible the high-resolution control of surface texture and chemistry over length scales ranging from molecular levels to centimeters. This paper reviews the fabrication techniques available for metallic and siliconbased surfaces, considering sintered and polymeric coatings. The influence of such surfaces in multiphase processes of high practical interest, e.g. boiling, condensation, freezing, and the associated physical phenomena are reviewed. The case is made that while engineers are in principle able to manufacture surfaces with optimum nucleation or thermofluid transport characteristics, more theoretical and experimental efforts are needed to guide the design and cost-effective fabrication of surfaces that not only satisfy the existing technological needs, but also catalyze new discoveries.
Dropwise condensation (DWC) heat transfer depends strongly on the maximum diameter (Dmax) of condensate droplets departing from the condenser surface. This study presents a facile technique implemented to gain control of Dmax in DWC within vapor/air atmospheres. We demonstrate how this approach can enhance the corresponding heat transfer rate by harnessing the capillary forces in the removal of the condensate from the surface. We examine various hydrophilic-superhydrophilic patterns, which, respectively, sustain and combine DWC and filmwise condensation on the substrate. The material system uses laser-patterned masking and chemical etching to achieve the desired wettability contrast and does not employ any hydrophobizing agent. By applying alternating straight parallel strips of hydrophilic (contact angle ∼78°) mirror-finish aluminum and superhydrophilic regions (etched aluminum) on the condensing surface, we show that the average maximum droplet size on the less-wettable domains is nearly 42% of the width of the corresponding strips. An overall improvement in the condensate collection rate, up to 19% (as compared to the control case of DWC on mirror-finish aluminum) was achieved by using an interdigitated superhydrophilic track pattern (on the mirror-finish hydrophilic surface) inspired by the vein network of plant leaves. The bioinspired interdigitated pattern is found to outperform the straight hydrophilic-superhydrophilic pattern design, particularly under higher humidity conditions in the presence of noncondensable gases (NCG), a condition that is more challenging for maintaining sustained DWC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.