We carry out a bibliometric analysis on neurological and ophthalmological pathologies based on retinal nerve fiber layer (RNFL) thickness measured with optical coherence tomography (OCT). Documents were selected from Scopus database. We have applied the most commonly used bibliometric indicators, both for production and dispersion, as Price’s law of scientific literature growth, Lotka’s law, the transient index, and the Bradford model. Finally, the participation index of the different countries and affiliations was calculated. Two-hundred-and-forty-one documents from the period 2000–2019 were retrieved. Scientific production was better adjusted to linear growth (r = 0.88) than exponential (r = 0.87). The duplication time of the documents obtained was 5.6 years. The transience index was 89.62%, which indicates that most of the scientific production is due to very few authors. The signature rate per document was 5.2. Nine journals made up the Bradford core. USA and University of California present the highest production. The most frequently discussed topics on RNFL thinning are glaucoma and neurodegenerative diseases (NDD). The growth of the scientific literature on RNFL thickness was linear, with a very high rate of transience, which indicates low productivity and the presence of numerous authors who sporadically publish on this topic. No evidence of a saturation point was observed. In the last 10 years, there has been an increase in documents relating the decline of RNFL to NDD.
The purpose of this study was to compare the peripapillary retinal nerve fibre layer (RNFL) between patients with genetic generalized epilepsy (GGE) and healthy controls. Methods: This prospective observational study was conducted on adults aged 18-60 years. The study group comprised 26 consecutive patients who met the inclusion criteria and 26 healthy age-and sex-matched healthy adults. Peripapillary RNFL thickness was measured by spectral domain optical coherence tomography. Results: The average peripapillary RNFL thickness was significantly thinner for GGE patients (98.61 μm) than for healthy controls (104.77 μm) (p = 0.016). Similar results were obtained for the left eye. The peripapillary RFNL thickness of all quadrants was lower for GGE patients than for healthy controls, but it was significant only in the superior (p = 0.009) and inferior (p = 0.024) quadrants for both eyes. Conclusions: Our results suggest that the peripapillary RNFL is significantly thinner in GGE patients than in healthy participants. We concluded that this microstructural feature might be an intrinsic feature of GGE.
The purpose of this study is to determine the possible alterations that may occur in the thickness of the retinal nerve fibre layer (RNFL), ganglion cell layer (GCL), and macular thickness in patients with chronic migraines compared with healthy controls. Hence, we examined some of the possibilities that are offered by optical coherence tomography (OCT) in order to study different neurological diseases and to study its application, in this case, how it may be applied to patients with chronic migraines. This was an observational cross-sectional study in adults aged 18–65 years. The study group consisted of 90 patients (90 eyes) with chronic migraines who met the inclusion criteria, and 90 healthy controls (90 eyes) matched for age and sex. Retinal thickness was measured by spectral domain OCT (SD-OCT). The thickness of the superior quadrant of the peripapillary RNFL, as well as the mean thickness in the macula, RNFL macular, and GCL was significantly thinner in chronic migraine patients than in healthy controls (p ≤ 0.05). Chronic migraines are associated with a decrease in retinal thickness which is detectable by an OCT diagnostic technique. The quantification of the axonal damage could be used as a biomarker to help in the diagnosis and monitoring of this pathology. Further studies will be needed to confirm these findings.
The objectives of the present study are to determine the effects of alcohol use on the retinal nerve fiber layer (RNFL) thickness and macular thickness of abstinent patients with alcohol use disorders (AUD) and to assess whether it correlates with alcohol consumption and/or cognitive impairment. This was a prospective, observational study that included 21 patients (42 eyes) and 21 controls (42 eyes). Patients met the criteria for early remission AUD at the moment of inclusion. We used optical coherence tomography to assess retinal thickness. Macular thickness in the group of AUD patients was lower in all quadrants (p < 0.05), with the exception of the peripheral and central. Regarding the nerve fiber layer in the macular and papilla areas, we found no significant differences. At the retina ganglion cell layer and in the nerve fiber of the macula, we found significant differences in all quadrants (p < 0.05), with the exception of the superior and superior nasal area, for the right eye. For the left eye, the only differences were found in the lower quadrant. Finally, when comparing the AUD patients to the controls, we found significant reductions in the ganglion cell layer of the macula in all quadrants in the former. There was a significant correlation between these findings and cognitive impairment (measured with the Test de Detección de Deterioro Cognitivo en Alcoholismo (TEDCA)), but not with alcohol consumption. Alcohol consumption is correlated with retinal harm and related cognitive decline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.