A significant increase of the electrical conductivity of PEDOT:PSS films, brought about by the addition of dimethyl sulfate (DMS, (CH 3 ) 2 SO 4 ), while preserving the films' excellent flexibility and visible-light transparency, is reported. The electrical and morphological properties of the films were studied as a function of DMS concentration. At an optimal concentration of around 1:25 (DMS to PEDOT:PSS), the conductivity of the films is enhanced by a factor on the order of 1880 times that of pristine PEDOT:PSS films. Extensive spectroscopic measurements using absorbance, Raman, and FTIR techniques, as well as structural characterization by AFM microscopy, were performed. These measurements support the idea that the mechanism responsible for the conductivity enhancement is the partial replacement of the PSSsegments by SO 4 -2 anionic sulfates when a small amount of DMS is added to a PEDOT:PSS solution. This mechanism is associated with an increase of doping, and this doping can be understood in the following manner: due to that the SO 3 ions of the PSS segment only carry one negative charge, it is more probable for them to create polaronic states, whereas the SO 4 -2 ions are double charged, increasing the possibility of creating bipolaron carriers in the PEDOT backbone. In this way, the partial replacement of the PSSsegments by SO 4 -2 ions increases the bipolaron population by an ion exchange process, and, as a consequence, the doping level is increased.
This work focuses on investigating the curing process of an epoxy-based resin—Aerotuf 275-34TM, designed for aerospace applications. To study the curing degree of Aerotuf 275-34TM under processing conditions, woven carbon fiber fabric (WCFF)/Aerotuf 275-34TM composite laminates were produced by compression molding using different processing temperatures (110, 135, 160, and 200 °C) during 15 and 30 min. Then, the mechanical behavior of the composite laminates was evaluated by tensile tests and correlated to the resin curing degree through Fourier-transform infrared spectroscopy (FTIR) analysis. The results show the occurrence of two independent reactions based on the consumption of epoxide groups and maleimide (MI) double bonds. In terms of epoxide groups, a conversion degree of 0.91 was obtained for the composite cured at 160 °C during 15 min, while the measured tensile properties of [±45°] WCFF/Aerotuf 275-34TM laminates confirmed that these epoxy resin curing processing conditions lead to an enhancement of the composite mechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.