Understanding levee failures can be significantly improved by analysing historical failures, experiments and performance observations. Individual efforts have been undertaken to document flood defence failures but no systematically gathered large scale, open access dataset is currently available for thorough scientific research. Here, we introduce an efficiently structured, global database, called International Levee Performance Database (ILPD), which aims to become a valuable knowledge platform in the field of levee safety. It comprises information on levee characteristics, failure mechanisms, geotechnical investigations and breach processes for more than 1500 cases (October 2019). We provide a macro-scale analysis of the available data, aiming to provide insights on levee behaviour based on historical records. We outline common failure mechanisms of which external erosion is identified as the most frequent for levees. As an example, we investigate flood events occurred in Germany (2002, 2013) and examine breach characteristics of hundreds of failures. It is found that initial failure mechanisms have an influence on breach characteristics and that failures due to instability and internal erosion are less frequent but lead to larger breaches. Moreover, a relation between the return period and the expected breach density during a flood event is identified. These insights could complement flood risk assessments.
Levees are critical systems in safeguarding an area against catastrophic flooding events with potential fatalities and economic losses. Current monitoring methods of levees highly rely on expert judgement, resulting in infrequent and subjective assessments of their status. Satellite radar imaging, in particular using interferometry (InSAR), holds a large potential to monitor the condition of levees with millimetre‐level precision, anywhere on the planet. However, for levee management, the usability of the technique requires significant radar expert knowledge. Here, we provide a comprehensive overview of the state of the art in using time‐series InSAR for systematic levee deformation monitoring. We explore its use to complement existing approaches for assessing levee deformation and failure investigations in a fast, systematic, and cost‐effective way. The applicability of imaging radar satellites is discussed, supported by case studies on levee monitoring in the Netherlands. We elaborate on the technical aspects with respect to levee monitoring using SAR technology, such as estimating deformation in different directions, satellite characteristics, precision, and reliability. We conclude that InSAR is becoming an operational deformation monitoring system, which allows for the detection, tracking, and analysis of irregularities on levee sections with increased efficiency and quality, thus contributing to improved risk management.
Levees are critical in providing protection against catastrophic flood events, and thus require continuous monitoring. Current levee inspection methods rely on limited information obtained by visual inspection, resulting in infrequent, localized, mostly qualitative and subjective assessments. This hampers the timely detection of problematic locations and the assessment of levee safety in general. Satellite radar interferometry yields weekly observations of levee conditions with high precision which complement current inspection methods. Here we show that levees are susceptible to short-term swelling and shrinkage associated with meteorological conditions, and assess how deformations can be related to the geohydrological properties and the safety of the levee. Our findings allow to understand the sub-seasonal behaviour of the levee in greater detail and to predict swelling and shrinkage due to variation of the loading conditions. This will improve the detection of anomalous levee responses which contributes to the development of reliable early warning methods using continuous deformation monitoring.
Abstract. Flood defense failures are rare events but when they do occur lead to significant amounts of damage. The defenses are usually designed for rather low-frequency hydraulic loading and as such typically at least high enough to prevent overflow. When they fail, flood defenses like levees built with modern design codes usually either fail due to wave overtopping or geotechnical failure mechanisms such as instability or internal erosion. Subsequently geotechnical failures could trigger an overflow leading for the breach to grow in size Not only the conditions relevant for these failure mechanisms are highly uncertain, also the model uncertainty in geomechanical, internal erosion models, or breach models are high compared to other structural models. Hence, there is a need for better validation and calibration of models or, in other words, better insight in model uncertainty. As scale effects typically play an important role and full-scale testing is challenging and costly, historic flood defense failures can be used to provide insights into the real failure processes and conditions. The recently initiated SAFElevee project at Delft University of Technology aims to exploit this source of information by performing back analysis of levee failures at different level of detail. Besides detailed process based analyses, the project aims to investigate spatial and temporal patterns in deformation as a function of the hydrodynamic loading using satellite radar interferometry (i.e. PS-InSAR) in order to examine its relation with levee failure mechanisms. The project aims to combine probabilistic approaches with the mechanics of the various relevant failure mechanisms to reduce model uncertainty and propose improvements to assessment and design models. This paper describes the approach of the study to levee breach analysis and the use of satellites for breach initiation analysis, both adopted within the SAFElevee project.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.