This work is aimed at optimizing the wind turbine rotor speed setpoint algorithm. Several intelligent adjustment strategies have been investigated in order to improve a reward function that takes into account the power captured from the wind and the turbine speed error. After different approaches including Reinforcement Learning, the best results were obtained using a Particle Swarm Optimization (PSO)-based wind turbine speed setpoint algorithm. A reward improvement of up to 10.67% has been achieved using PSO compared to a constant approach and 0.48% compared to a conventional approach. We conclude that the pitch angle is the most adequate input variable for the turbine speed setpoint algorithm compared to others such as rotor speed, or rotor angular acceleration.
This paper shows experimental results on electromyography (EMG)-based system control applied to motorized orthoses. Biceps and triceps EMG signals are captured through two biometrical sensors, which are then filtered and processed by an acquisition system. Finally an output/control signal is produced and sent to the actuators, which will then perform the actual movement, using algorithms based on autoregressive (AR) models and neural networks, among others. The research goal is to predict the desired movement of the lower arm through the analysis of EMG signals, so that the movement can be reproduced by an arm orthosis, powered by two linear actuators. In this experiment, best accuracy has achieved values up to 91%, using a fourth-order AR-model and 100ms block length.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.