Lattice constant mismatch between materials affects the quality of thin film fabrication. For this reason, lattice constants information is vital in the design of materials for technological applications. The determination of lattice constants via experimental analysis is relatively expensive and laborious. As a result, several linear empirical models have been proposed to predict the lattice constant of crystal structures. However, the accuracies of these models are limited partly due to their failure to account for nonlinearity in the atomic parameters-lattice constant relationship. Machine learning techniques have shown excellent ability to deal with nonlinear problems in many areas of materials science; hence, they are considered suitable computation tools to study the crystal structure of materials. In this contribution, we developed a support vector regression (SVR) model to predict the lattice constant of cubic crystals of the form A2XY6 (A = K, Cs, Rb, TI; X = tetravalent cation; and Y = F, Cl, Br, I). The SVR algorithm uses the ionic radii and electronegativities data of the constituent elements of A2XY6 cubic crystals as model inputs. The robustness of the proposed model was demonstrated by comparing our result with an existing linear model based on 26 cubic crystal samples. The result revealed a total relative deviation of 1.757 and 2.704 for the SVR model and the existing linear equation, respectively. This result proves that the SVR model has a huge potential in the search for new materials for different applications.
Degenerative joint conditions are often characterized by changes in articular cartilage and subchondral bone properties. These changes are often associated with subchondral plate thickness and trabecular bone morphology. Thus, evaluating subchondral bone integrity could provide essential insights for diagnosis of joint pathologies. This study investigates the potential of optical spectroscopy for characterizing human subchondral bone properties. Osteochondral samples (n = 50) were extracted from human cadaver knees (n = 13) at four anatomical locations and subjected to NIR spectroscopy. The samples were then imaged using micro-computed tomography to determine subchondral bone morphometric properties, including: plate thickness (Sb.Th), trabecular thickness (Tb.Th), volume fraction (BV/TV), and structure model index (SMI). The relationship between the subchondral bone properties and spectral data in the 1st (650–950 nm), 2nd (1100–1350 nm) and 3rd (1600–1870 nm) optical windows were investigated using partial least squares (PLS) regression multivariate technique. Significant correlations (p < 0.0001) and relatively low prediction errors were obtained between spectral data in the 1st optical window and Sb.Th (R2 = 92.3%, error = 7.1%), Tb.Th (R2 = 88.4%, error = 6.7%), BV/TV (R2 = 83%, error = 9.8%) and SMI (R2 = 79.7%, error = 10.8%). Thus, NIR spectroscopy in the 1st tissue optical window is capable of characterizing and estimating subchondral bone properties, and can potentially be adapted during arthroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.