Conventional arthroscopic evaluation of articular cartilage is subjective and insufficient for assessing early compositional and structural changes during the progression of post-traumatic osteoarthritis. Therefore, in this study, arthroscopic near-infrared (NIR) spectroscopy is introduced, for the first time, for
in vivo
evaluation of articular cartilage thickness, proteoglycan (PG) content, and collagen orientation angle. NIR spectra were acquired
in vivo
and
in vitro
from equine cartilage adjacent to experimental cartilage repair sites. As reference, digital densitometry and polarized light microscopy were used to evaluate superficial and full-thickness PG content and collagen orientation angle. To relate NIR spectra and cartilage properties, ensemble neural networks, each with two different architectures, were trained and evaluated by using Spearman’s correlation analysis (
ρ
). The ensemble networks enabled accurate predictions for full-thickness reference properties (PG content:
ρ
in vitro, Val
= 0.691,
ρ
in vivo
= 0.676; collagen orientation angle:
ρ
in vitro, Val
= 0.626,
ρ
in vivo
= 0.574) from NIR spectral data. In addition, the networks enabled reliable prediction of PG content in superficial (25%) cartilage (
ρ
in vitro, Val
= 0.650,
ρ
in vivo
= 0.613) and cartilage thickness (
ρ
in vitro, Val
= 0.797,
ρ
in vivo
= 0.596). To conclude, NIR spectroscopy could enhance the detection of initial cartilage degeneration and thus enable demarcation of the boundary between healthy and compromised cartilage tissue during arthroscopic surgery.