It is known that periods of intense social interaction result in shared patterns in collaborators’ physiological signals. However, applied quantitative research on collaboration is hindered due to scarcity of objective metrics of teamwork effectiveness. Indeed, especially in the domain of productive, ecologically-valid activity such as programming, there is a lack of evidence for the most effective, affordable and reliable measures of collaboration quality. In this study we investigate synchrony in physiological signals between collaborating computer science students performing pair-programming exercises in a class room environment. We recorded electrocardiography over the course of a 60 minute programming session, using lightweight physiological sensors. We employ correlation of heart-rate variability features to study social psychophysiological compliance of the collaborating students. We found evident physiological compliance in collaborating dyads’ heart-rate variability signals. Furthermore, dyads’ self-reported workload was associated with the physiological compliance. Our results show viability of a novel approach to field measurement using lightweight devices in an uncontrolled environment, and suggest that self-reported collaboration quality can be assessed via physiological signals.
Electroencephalography (EEG) is a rich source of information regarding brain function. However, the preprocessing of EEG data can be quite complicated, due to several factors. For example, the distinction between true neural sources and noise is indeterminate; EEG data can also be very large. The various factors create a large number of subjective decisions with consequent risk of compound error. Existing tools present the experimenter with a large choice of analysis methods. Yet it remains a challenge for the researcher to integrate methods for batch-processing of the average large datasets, and compare methods to choose an optimal approach across the many possible parameter configurations. Additionally, many tools still require a high degree of manual decision making for, e.g. the classification of artefacts in channels, epochs or segments. This introduces extra subjectivity, is slow and is not reproducible. Batching and well-designed automation can help to regularise EEG preprocessing, and thus reduce human effort, subjectivity and consequent error. We present the computational testing for automated preprocessing (CTAP) toolbox, to facilitate: (i) batch-processing that is easy for experts and novices alike; (ii) testing and manual comparison of preprocessing methods. CTAP extends the existing data structure and functions from the well-known EEGLAB toolbox, based on Matlab and produces extensive quality control outputs. CTAP is available under MIT licence from https://github.com/bwrc/ctap.
Objective: To investigate the feasibility of near-infrared (NIR) spectroscopy (NIRS) for evaluation of human articular cartilage biomechanical properties during arthroscopy. Design: A novel arthroscopic NIRS probe designed in our research group was utilized by an experienced orthopedic surgeon to measure NIR spectra from articular cartilage of human cadaver knee joints (ex vivo, n ¼ 18) at several measurement locations during an arthroscopic surgery. Osteochondral samples (n ¼ 265) were extracted from the measurement sites for reference analysis. NIR spectra were remeasured in a controlled laboratory environment (in vitro), after which the corresponding cartilage thickness and biomechanical properties were determined. Hybrid multivariate regression models based on principal component analysis and linear mixed effects modeling (PCA-LME) were utilized to relate cartilage in vitro spectra and biomechanical properties, as well as to account for the spatial dependency. Additionally, a k-nearest neighbors (kNN) classifier was employed to reject outlying ex vivo NIR spectra resulting from a non-optimal probe-cartilage contact. Model performance was evaluated for both in vitro and ex vivo NIR spectra via Spearman's rank correlation (r) and the ratio of performance to interquartile range (RPIQ). Results: Regression models accurately predicted cartilage thickness and biomechanical properties from in vitro NIR spectra (Model: 0.77 r 0.87, 2.03 RPIQ 3.0; Validation: 0.74 r 0.84, 1.87 RPIQ 2.90). When predicting cartilage properties from ex vivo NIR spectra (0.33 r 0.57 and 1.02 RPIQ 2.14), a kNN classifier enhanced the accuracy of predictions (0.52 r 0.87 and 1.06 RPIQ 1.88). Conclusion: Arthroscopic NIRS could substantially enhance identification of damaged cartilage by enabling quantitative evaluation of cartilage biomechanical properties. The results demonstrate the capacity of NIRS in clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.