________________________________________________________________________In the domain of computer games, research into the interaction between player and game has centred on 'enjoyment', often drawing in particular on optimal experience research and Csikszentmihalyi's 'Flow theory'. Flow is a well-established construct for examining experience in any setting and its application to game-play is intuitive. Nevertheless, it's not immediately obvious how to translate between the flow construct and an operative description of game-play. Previous research has attempted this translation through analogy. In this article we propose a practical, integrated approach for analysis of the mechanics and aesthetics of game-play, which helps develop deeper insights into the capacity for flow within games.The relationship between player and game, characterized by learning and enjoyment, is central to our analysis. We begin by framing that relationship within Cowley's user-system-experience (USE) model, and expand this into an information systems framework, which enables a practical mapping of flow onto game-play. We believe this approach enhances our understanding of a player's interaction with a game and provides useful insights for games' researchers seeking to devise mechanisms to adapt game-play to individual players.
This paper reviews the psychophysiological method in game research. The use of psychophysiological measurements provides an objective, continuous, real-time, non-invasive, precise, and sensitive way to assess the game experience, but for best results it requires carefully controlled experiments, large participant samples and specialized equipment. We briefly explain the theory behind the method and present the most useful measures. We review previous studies that have used psychophysiological measures in game research, and provide future directions.
Collaboration is a complex phenomenon, where intersubjective dynamics can greatly affect the productive outcome. Evaluation of collaboration is thus of great interest, and can potentially help achieve better outcomes and performance. However, quantitative measurement of collaboration is difficult, because much of the interaction occurs in the intersubjective space between collaborators. Manual observation and/or self-reports are subjective, laborious, and have a poor temporal resolution. The problem is compounded in natural settings where task-activity and response-compliance cannot be controlled. Physiological signals provide an objective mean to quantify intersubjective rapport (as synchrony), but require novel methods to support broad deployment outside the lab. We studied 28 student dyads during a self-directed classroom pair-programming exercise. Sympathetic and parasympathetic nervous system activation was measured during task performance using electrodermal activity and electrocardiography. Results suggest that (a) we can isolate cognitive processes (mental workload) from confounding environmental effects, and (b) electrodermal signals show role-specific but correlated affective response profiles. We demonstrate the potential for social physiological compliance to quantify pair-work in natural settings, with no experimental manipulation of participants required. Our objective approach has a high temporal resolution, is scalable, non-intrusive, and robust.
It is known that periods of intense social interaction result in shared patterns in collaborators’ physiological signals. However, applied quantitative research on collaboration is hindered due to scarcity of objective metrics of teamwork effectiveness. Indeed, especially in the domain of productive, ecologically-valid activity such as programming, there is a lack of evidence for the most effective, affordable and reliable measures of collaboration quality. In this study we investigate synchrony in physiological signals between collaborating computer science students performing pair-programming exercises in a class room environment. We recorded electrocardiography over the course of a 60 minute programming session, using lightweight physiological sensors. We employ correlation of heart-rate variability features to study social psychophysiological compliance of the collaborating students. We found evident physiological compliance in collaborating dyads’ heart-rate variability signals. Furthermore, dyads’ self-reported workload was associated with the physiological compliance. Our results show viability of a novel approach to field measurement using lightweight devices in an uncontrolled environment, and suggest that self-reported collaboration quality can be assessed via physiological signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.