Phytopharmaceuticals play an essential role in medicine, since the need to investigate highly effective and safe drugs for the treatment of diabetes mellitus disease remains a significant challenge for modern medicine. Arbutus unedo L. root has various therapeutic properties, and has been used widely in the traditional medicine as an antidiabetic agent. The current study aimed to isolate the pharmacologically active compound from A. unedo roots using accelerated solvent extraction technology, to determine its chemical structure using different instrumental analytical methods, and also to evaluate the α-glucosidase inhibitory activity. The roots of A. unedo were exhaustively extracted by high-pressure static extraction using the Zippertex® technology (Dionex-ASE, Paris, France), and the extract was mixed with XAD-16 resin to reach quantifiable amounts of active compounds which were identified by high-pressure liquid chromatography (HPLC), 1H NMR (300 MHz), and 13C NMR. The antidiabetic activity of the isolated compound was evaluated using the α-glucosidase inhibitory assay. The active compound was isolated, and its structure was identified as catechin using instrumental analysis.The results revealed that the isolated compound has potential α-glucosidase inhibitory activity with an IC50 value of 87.55 ± 2.23 μg/mL greater than acarbose. This was used as a positive control, which has an IC50 value of 199.53 ± 1.12 μg/mL. According to the results achieved, the roots of A. unedo were considered the best source of catechin and the Zippertex® technology method of extraction is the best method for isolation of this therapeutic active compound. In addition, the α-glucosidase inhibitory activity results confirmed the traditional use of A. unedo roots as an antidiabetic agent. Future clinical trials and investigations of antidiabetic and other pharmacological effects such as anticancer are required.
BackgroundA novel series of 1,2,3-triazole derivatives containing 1,4-benzothiazin-3-one ring (7a–9a, 7b–9b), (10a–12a, 10b–12b) and (13–15) were synthesized by 1,3-dipolar cycloaddition reactions of azides α-d-galactopyranoside azide F, 2,3,4,6-tetra-O-acetyl-(d)-glucopyranosyl azide G and methyl-N-benzoyl-α-azidoglycinate H with compounds 4–6.FindingsInitially, the reactions were conducted under thermal conditions in ethanol. The reaction leads, each time, to the formation of two regioisomers: (Schemes 2, 3) with yields of 17 to 21% for 1,5-disubstituted 1,2,3-triazole-regioisomers (7b–12b) and yields ranging from 61 to 65% for the 1,4-disubstituted regioisomers (7a–12a). In order to report an unequivocal synthesis of the 1,4-regioisomers and confirm the structures of the two regioisomers obtained in thermal conditions (Huisgen reactions), the method click chemistry (Copper-Catalyzed Azide-Alkyne Cycloaddition) has been used.ConclusionsThe newly synthesized compounds using cycloaddition reactions were evaluated in vitro for their antibacterial activities against some Gram positive and Gram negative microbial strains. Among the compounds tested, the compound 8a showed excellent antibacterial activities against PA ATCC and Acin ESBL (MIC = 31.2 μg/ml).
A combined experimental study and molecular electron density theory (MEDT) analysis was carried out to investigate the click of 1,2,3-triazole derivatives by Ag(I)-catalyzed azide-alkyne cycloaddition (AgAAC) reaction as well as its corresponding mechanistic pathway. Such a synthetic protocol leads to the regioselective formation of 1,4-disubstituted-1,2,3-triazoles in the presence of AgCl as catalyst and water as reaction solvent at room temperature and pressure. The MEDT was performed by applying Density Functional Theory (DFT) calculations at both B3LYP/6-31G(d,p) (LANL2DZ for Ag) and ωB97XD/6-311G(d,p) (LANL2DZ for Ag) levels with a view to decipher the observed regioselectivity in AgAAC reactions, and so to set out the number of silver(I) species and their roles in the formation of 1,4-disubstituted-1,2,3-triazoles. The comparison of the values of the energy barriers for the mono- and dinuclear Ag(I)-acetylide in the AgAAC reaction paths shows that the calculated energy barriers of dinuclear processes are smaller than those of the mononuclear one. The type of intramolecular interactions in the investigated AgAAC click chemistry reaction accounts for the regioselective formation of the 1,4-regiosisomeric triazole isomer. The ionic character of the starting compounds, namely Ag-acetylide, is revealed for the first time. This finding rules out any type of covalent interaction, involving the silver(I) complexes, along the reaction pathway. Electron localization function (ELF) topological analysis of the electronic structure of the stationary points reaffirmed the zw-type (zwitterionic-type) mechanism of the AgAAC reactions.
The title molecule, C17H15N5, adopts a Z-shaped conformation, with the benzyl and benzodiazole substituents disposed on opposite sides of the plane of the triazole ring. A three-dimensional network is generated in the crystal by a combination of C—H...N hydrogen bonds and C—H...π(ring) interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.