Fused Deposition Modelling (FDM) is one of the additive manufacturing (AM) techniques that have emerged as the most feasible and prevalent approach for generating functional parts due to its ability to produce neat and intricate parts. FDM mainly utilises one of the widely used polymers, polylactic acid, also known as polylactide (PLA). It is an aliphatic polyester material and biocompatible thermoplastic, with the best design prospects due to its eco-friendly properties; when PLA degrades, it breaks down into water and carbon dioxide, neither of which are hazardous to the environment. However, PLA has its limitations of poor mechanical properties. Therefore, a filler reinforcement may enhance the characteristics of PLA and produce higher-quality FDM-printed parts. The processing parameters also play a significant role in the final result of the printed parts. This review aims to study and discover the properties of PLA and the optimum processing parameters. This review covers PLA in FDM, encompassing its mechanical properties, processing parameters, characterisation, and applications. A comprehensive description of FDM processing parameters is outlined as it plays a vital role in determining the quality of a printed product. In addition, PLA polymer is highly desirable for various field industrial applications such as in a medical, automobile, and electronic, given its excellent thermoplastic and biodegradability properties.
This article discusses the concept of using an industrial robot arm platform for additive manufacturing. The concept being explored is the integration of existing additive manufacturing process technologies with an industrial robot arm to create a 3D printer with a multi-plane layering capability. The objective is to develop multi-plane toolpath motions that will leverage the increased capability of the robot arm platform compared to conventional gantry-style 3D printers. This approach enables print layering in multiple planes whereas existing conventional 3D printers are restricted to a single toolpath plane (e.g. x-y plane). This integration combines the fused deposition modeling techniques using an extruder head that is typically used in 3D printing and a 6 degree of freedom robot arm. Here, a Motoman SV3X is used as the platform for the robot arm. A higher level controller is used to control the robot and the extruder. To communicate with the robot, MotoCom SDK libraries is used to develop the interfacing software between the higher level controller and the robot arm controller. The integration of these systems enabled multi-plane toolpath motions to be utilized to produce 3D printed parts. A test block has been 3D printed using this integrated system.
In this paper, a study on detectability and readability of barcodes using omnidirectional vision system for automated guided vehicle is presented. Images from omnidirectional camera are known to be distorted against the height of the object. We present an algorithm for detecting and reading barcodes successfully without correcting the image distortion. Experiments were conducted both when the AGV was in motion and at rest. Three contributing factors were identified for successful barcodes detection and reading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.