Bottom-up proteomics analyses have been proved over the last years to be a powerful tool in the characterization of the proteome and are crucial for understanding cellular and organism behaviour. Through differential proteomic analysis researchers can shed light on groups of proteins or individual proteins that play key roles in certain, normal or pathological conditions. However, several tools for the analysis of such complex datasets are powerful, but hard-to-use with steep learning curves. In addition, some other tools are easy to use, but are weak in terms of analytical power. Previously, we have introduced ProteoSign, a powerful, yet user-friendly open-source online platform for protein differential expression/abundance analysis designed with the end-proteomics user in mind. Part of Proteosign's power stems from the utilization of the well-established Linear Models For Microarray Data (LIMMA) methodology. Here, we present a substantial upgrade of this computational resource, called ProteoSign v2, where we introduce major improvements, also based on user feedback. The new version offers more plot options, supports additional experimental designs, analyzes updated input datasets and performs a gene enrichment analysis of the differentially expressed proteins. We also introduce the deployment of the Docker technology and significantly increase the speed of a full analysis. ProteoSign v2 is available at http://bioinformatics.med.uoc.gr/ProteoSign.
ETS2 repressor factor (ERF) haploinsufficiency causes late onset craniosynostosis (OMIM 600775; CRS4) in humans while in mice Erf-insufficiency also leads to a similar multi-suture synostosis phenotype preceded by mildly reduced calvarium ossification. However, neither the cell types affected nor the effects per se have been identified so far. Here we establish an ex vivo system for the expansion of suture-derived mesenchymal stem and progenitor cells (sdMSCs) and analyze the role of Erf levels in their differentiation. Cellular data suggest that Erf-insufficiency specifically decreases osteogenic differentiation of sdMSCs resulting in the initially delayed mineralization of the calvarium. Transcriptome analysis indicates that Erf is required for efficient osteogenic lineage commitment of sdMSCs. Elevated retinoic acid catabolism due to increased levels of the cytochrome P450 superfamily member Cyp26b1 as a result of decreased Erf levels appears to be the underlying mechanism leading to defective differentiation. Exogenous addition of retinoic acid can rescue the osteogenic differentiation defect suggesting that Erf affects cranial bone mineralization during skull development through retinoic acid gradient regulation
Tissue-specific gene methylation events are key to the pathogenesis of several diseases and can be utilized for diagnosis and monitoring. Here, we established an in silico pipeline to analyze high-throughput methylome datasets to identify specific methylation fingerprints in three pathological entities of major burden, i.e., breast cancer (BrCa), osteoarthritis (OA) and diabetes mellitus (DM). Differential methylation analysis was conducted to compare tissues/cells related to the pathology and different types of healthy tissues, revealing Differentially Methylated Genes (DMGs). Highly performing and low feature number biosignatures were built with automated machine learning, including: (1) a five-gene biosignature discriminating BrCa tissue from healthy tissues (AUC 0.987 and precision 0.987), (2) three equivalent OA cartilage-specific biosignatures containing four genes each (AUC 0.978 and precision 0.986) and (3) a four-gene pancreatic β-cell-specific biosignature (AUC 0.984 and precision 0.995). Next, the BrCa biosignature was validated using an independent ccfDNA dataset showing an AUC and precision of 1.000, verifying the biosignature’s applicability in liquid biopsy. Functional and protein interaction prediction analysis revealed that most DMGs identified are involved in pathways known to be related to the studied diseases or pointed to new ones. Overall, our data-driven approach contributes to the maximum exploitation of high-throughput methylome readings, helping to establish specific disease profiles to be applied in clinical practice and to understand human pathology.
Pancreatic ductal adenocarcinoma (PDAC), the second most prevalent gastrointestinal malignancy and the most common type of pancreatic cancer is linked with poor prognosis and, eventually, with high mortality rates. Early detection is seldom, while tumor heterogeneity and microarchitectural alterations benefit PDAC resistance to conventional therapeutics. Although emerging evidence suggest the core role of cancer stem cells (CSCs) in PDAC aggressiveness, unique stem signatures are poorly available, thus limiting the efforts of anti-CSC-targeted therapy. Herein, we report the findings of the first genome-wide analyses of mRNA/lncRNA transcriptome profiling and co-expression networks in PDAC cell line-derived CD133+/CD44+ cells, which were shown to bear a CSC-like phenotype in vitro and in vivo. Compared to CD133−/CD44− cells, the CD133+/CD44+ population demonstrated significant expression differences in both transcript pools. Using emerging bioinformatic tools, we performed lncRNA target coding gene prediction analysis, which revealed significant Gene Ontology (GO), pathway, and network enrichments in many dyregulated lncRNA nearby (cis or trans) mRNAs, with reported involvement in the regulation of CSC phenotype and functions. In this context, the construction of lncRNA/mRNA networks by ingenuity platforms identified the lncRNAs ATF2, CHEK1, DCAF8, and PAX8 to interact with “hub” SC-associated mRNAs. In addition, the expressions of the above lncRNAs retrieved by TCGA-normalized RNAseq gene expression data of PAAD were significantly correlated with clinicopathological features of PDAC, including tumor grade and stage, nodal metastasis, and overall survival. Overall, our findings shed light on the identification of CSC-specific lncRNA signatures with potential prognostic and therapeutic significance in PDAC.
Protein–protein interactions (PPIs) are of key importance for understanding how cells and organisms function. Thus, in recent decades, many approaches have been developed for the identification and discovery of such interactions. These approaches addressed the problem of PPI identification either by an experimental point of view or by a computational one. Here, we present an updated version of UniReD, a computational prediction tool which takes advantage of biomedical literature aiming to extract documented, already published protein associations and predict undocumented ones. The usefulness of this computational tool has been previously evaluated by experimentally validating predicted interactions and by benchmarking it against public databases of experimentally validated PPIs. In its updated form, UniReD allows the user to provide a list of proteins of known implication in, e.g., a particular disease, as well as another list of proteins that are potentially associated with the proteins of the first list. UniReD then automatically analyzes both lists and ranks the proteins of the second list by their association with the proteins of the first list, thus serving as a potential biomarker discovery/validation tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.