.This paper deals with an alternative design method of airfoil for wind turbine blade for low wind speed based on combination of smart computing and numerical optimization. In this work, a simulation of Artificial Neural Network (ANN) for determining the relation between airfoil geometry and its aerodynamic characteristics was conducted. First, several airfoil geometries were generated through transformation of complex variables (Joukowski transformation), and then lift and drag coefficients of each airfoil were determined using CFD (Computational Fluid Dynamics). In present study, the ANN training was conducted using airfoil geometry and its aerodynamic characteristics as input and output, respectively. Therefore, lift and drag coefficients can be directly determined only by giving the airfoil geometry without having to perform wind tunnel experiment or numerical computation. Moreover, the optimization was conducted to obtain an airfoil geometry which gives maximum lift to drag ratio (CL/CD) for specific Reynolds number. For this purpose Genetic Algorithm (GA) was applied as optimizer. The results were validated using commercial CFD and it can be shown that the result are satisfactory with error approximately of 6%.
AbstrakMonitoring berbasis getaran adalah sebuah metode yand dapat dipergunakan untuk menentukan kondisi suatu sistem. Kondisi
Kata kunci: getaran, monitoring kondisi, sensor cerdas nirkabel
AbstractVibration based condition monitoring is a method used for determining the condition of a system. The condition of mechanical or a structural system can be determined from the vibration. The vibration that is produced by the system indicates the condition of a system and possibly used to calculate the lifetime of a system or even used to take early action before fatal failure occurred. This paper explains how the wireless smart sensor can be used to identify the health condition of a system by monitoring the vibration parameters. The wireless smart sensor would continuously senses the vibration parameters of the system in a real-time systems and then data will be transmitted wirelessly to a base station which is a host PC used for digital signal processing, from there the vibration will be plotted as a graph which used to analyzed the condition of the system. Finally, several tested performed to the real system to verify the accuracy of a smart sensor and the method of condition based monitoring.
The objective of this work is to analyze and optimize a bus frame structure using Finite Element Method in dynamic conditions. The bus body geometry was obtained directly from the three-dimensional Computer-Aided Design files. The optimization was conducted to determine the minimum weight of the bus frame structure without violating the specified natural frequency constraints. The design variable is the thickness of the bus body frame. In present study, Adaptive Single Objective method was chosen as an optimizer method. The results show that the structural weight of the bus frame can be reduced about 8% without changing its dynamic characteristic.
This research will try to design a low cost of fixed-wing unmanned aerial vehicle (UAV) using low-cost material that able to fly autonomously. Six parameters of UAV’s structure will be optimized based on basic airframe configuration, wing configuration, straight wing, tail configuration, fuselage material, and propeller location. The resulted and manufactured prototype of fixed-wing UAV will be tested in autonomous fight tests. Based on the flight test, the developed UAV can successfully fly autonomously following the trajectory command. The result shows that low-cost material can be used as a body part of fixed-wing UAV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.