The aim of this paper is to obtain a set of traveling wave solutions for klein –Gorden equation with kerr law non-linearity. More precisely, we apply a new path of popularized homogeneous balance (HB) method in terms of using linear auxiliary equations to find the results of non-linear klein-Gorden equation, which is a fundamental approach to determine competent solutions. The solutions are achieved as the integration of exponential, hyperbolic, trigonometric and rational functions. Besides, some of the solutions are demonstrated by the3D graphics.
In the present paper, we apply the modern extension of the hyperbolic tanh function method of nonlinear partial differential equations (NLPDEs) of Kudryashov - Sinelshchikov (KS) equation for obtaining exact and solitary traveling wave solutions. Through our solutions, we gain various functions, such as, hyperbolic, trigonometric and rational functions. Additionally, we support our results by comparisons with other methods and painting 3D graphics of the exact solutions. It is shown that our method provides a powerful mathematical tool to find exact solutions for many other nonlinear equations in applied mathematics
http://dx.doi.org/10.25130/tjps.25.2020.039
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.