Falls are a major risk for the elderly people living independently. Rapid detection of fall events can reduce the rate of mortality and raise the chances to survive the event and return to independent living. In the last two decades, several technological solutions for detection of falls were published, but most of them suffer from critical limitations. In this paper, we present a proof of concept to an automatic fall detection system for elderly people. The system is based on floor vibration and sound sensing, and uses signal processing and pattern recognition algorithm to discriminate between fall events and other events. The classification is based on special features like shock response spectrum and mel frequency ceptral coefficients. For the simulation of human falls, we have used a human mimicking doll: "Rescue Randy." The proposed solution is unique, reliable, and does not require the person to wear anything. It is designed to detect fall events in critical cases in which the person is unconscious or in a stress condition. From the preliminary research, the proposed system can detect human mimicking dolls falls with a sensitivity of 97.5% and specificity of 98.6%.
In the present study, epithelium derived lesions of various pathological manifestations were examined histologically and immunohistochemically for mononuclear cell infiltration. The infiltrate under the transformed epithelium of oral lesions, was examined for differences in the composition of immune mononuclear cells as the epithelium moves from hyperkeratosis through various degrees of dysplasia to squamous cell carcinoma. The study was performed on 53 human tongue tissues diagnosed as hyperkeratosis (11 cases), mild dysplasia (nine cases), moderate and severe dysplasia (14 cases) and squamous cell carcinoma (19 cases). A similar analysis was performed on 30 parotid gland tissues diagnosed as pleomorphic adenoma (14 cases) and carcinoma ex-pleomorphic adenoma (16 cases). Immunohistochemical analysis of various surface markers of the tumour infiltrating immune cells was performed and correlated with the transformation level as defined by morphology and the expression of p53 in the epithelium. The results revealed that, in the tongue lesions, the changes in the epithelium from normal appearance to transformed were accompanied by a corresponding increase in the infiltration of CD4, CD8, CD14, CD19+20, and HLA/DR positive cells. The most significant change was an increase in B lymphocytes in tongue lesions, that was in accordance with the transformation level (P50.001). In the salivary gland, a significant number of cases did not show an infiltrate. In cases where an infiltrate was present, a similar pattern was observed and the more malignant tissues exhibited a higher degree of immune cell infiltration.
The Er:YAG endoscopic delivery system described is a clinically viable and cost-effective device for a range of hard and soft tissue wet field applications accessible through rigid or semi-rigid endoscopes. Further improvements in the waveguide may allow access also through fully flexible endoscopes.
The mid-infrared (mid-IR) should be a fruitful area for medical research and instrumentation since this is the region where the most identifiable molecular molecules absorb and radiate. Due to the unique specificity of a biological molecule's spectrum in the mid-IR, semiconductor lasers in the mid-IR have a unique advantage over ultraviolet and visible or near-IR lasers. Small room-temperature laser diodes can be used in small hand-held, portable, and hopefully inexpensive, medical devices for rapid measurement, possibly in patient-operated home-care devices. Since the mid-IR radiation can be connected with otherwise invisible chemical processes, it becomes possible to watch the biochemical processes of life reveal themselves. Until recently, work in this region had been handicapped by lack of sources, detectors and optical materials, but this is changing, as this conference shows, and important new directions lie ahead.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.