Increasing soil organic carbon (SOC) via organic inputs is a key strategy for increasing long‐term soil C storage and improving the climate change mitigation and adaptation potential of agricultural systems. A long‐term trial in California's Mediterranean climate revealed impacts of management on SOC in maize‐tomato and wheat–fallow cropping systems. SOC was measured at the initiation of the experiment and at year 19, at five depth increments down to 2 m, taking into account changes in bulk density. Across the entire 2 m profile, SOC in the wheat–fallow systems did not change with the addition of N fertilizer, winter cover crops (WCC), or irrigation alone and decreased by 5.6% with no inputs. There was some evidence of soil C gains at depth with both N fertilizer and irrigation, though high variation precluded detection of significant changes. In maize‒tomato rotations, SOC increased by 12.6% (21.8 Mg C/ha) with both WCC and composted poultry manure inputs, across the 2 m profile. The addition of WCC to a conventionally managed system increased SOC stocks by 3.5% (1.44 Mg C/ha) in the 0–30 cm layer, but decreased by 10.8% (14.86 Mg C/ha) in the 30–200 cm layer, resulting in overall losses of 13.4 Mg C/ha. If we only measured soil C in the top 30 cm, we would have assumed an increase in total soil C increased with WCC alone, whereas in reality significant losses in SOC occurred when considering the 2 m soil profile. Ignoring the subsoil carbon dynamics in deeper layers of soil fails to recognize potential opportunities for soil C sequestration, and may lead to false conclusions about the impact of management practices on C sequestration.
Abstract. The Century Experiment at the Russell Ranch Sustainable Agriculture Facility at the University of California, Davis provides long-term agroecological data from row crop systems in California's Central Valley starting in 1993. The Century Experiment was initially designed to study the effects of a gradient of water and nitrogen availability on soil properties and crop performance in ten different cropping systems to measure tradeoffs and synergies between agricultural productivity and sustainability. Currently systems include 11 different cropping systems-consisting of four different crops and a cover crop mixture-and one native grass system. This paper describes the long-term core data from the Century Experiment from 1993-2014, including crop yields and biomass, crop elemental contents, aerial-photo-based Normalized Difference Vegetation Index data, soil properties, weather, chemical constituents in irrigation water, winter weed populations, and operational data including fertilizer and pesticide application amounts and dates, planting dates, planting quantity and crop variety, and harvest dates. This data set represents the only known long-term set of data characterizing food production and sustainability in irrigated and rainfed Mediterranean annual cropping systems. There are no copyright restrictions associated with the use of this dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.