Abstract.Since 2010, the Roll Back Malaria (RBM) Partnership, including National Malaria Control Programs, donor agencies (e.g., President's Malaria Initiative and Global Fund), and other stakeholders have been evaluating the impact of scaling up malaria control interventions on all-cause under-five mortality in several countries in sub-Saharan Africa. The evaluation framework assesses whether the deployed interventions have had an impact on malaria morbidity and mortality and requires consideration of potential nonintervention influencers of transmission, such as drought/floods or higher temperatures. Herein, we assess the likely effect of climate on the assessment of the impact malaria interventions in 10 priority countries/regions in eastern, western, and southern Africa for the President's Malaria Initiative. We used newly available quality controlled Enhanced National Climate Services rainfall and temperature products as well as global climate products to investigate likely impacts of climate on malaria evaluations and test the assumption that changing the baseline period can significantly impact on the influence of climate in the assessment of interventions. Based on current baseline periods used in national malaria impact assessments, we identify three countries/regions where current evaluations may overestimate the impact of interventions (Tanzania, Zanzibar, Uganda) and three countries where current malaria evaluations may underestimate the impact of interventions (Mali, Senegal and Ethiopia). In four countries (Rwanda, Malawi, Mozambique, and Angola) there was no strong difference in climate suitability for malaria in the pre- and post-intervention period. In part, this may be due to data quality and analysis issues.
Two recent initiatives, the World Health Organization (WHO) Strategic Advisory Group on Malaria Eradication and the Lancet Commission on Malaria Eradication, have assessed the feasibility of achieving global malaria eradication and proposed strategies to achieve it. Both reports rely on a climate-driven model of malaria transmission to conclude that long-term trends in climate will assist eradication efforts overall and, consequently, neither prioritize strategies to manage the effects of climate variability and change on malaria programming. This review discusses the pathways via which climate affects malaria and reviews the suitability of climate-driven models of malaria transmission to inform long-term strategies such as an eradication programme. Climate can influence malaria directly, through transmission dynamics, or indirectly, through myriad pathways including the many socioeconomic factors that underpin malaria risk. These indirect effects are largely unpredictable and so are not included in climate-driven disease models. Such models have been effective at predicting transmission from weeks to months ahead. However, due to several well-documented limitations, climate projections cannot accurately predict the medium- or long-term effects of climate change on malaria, especially on local scales. Long-term climate trends are shifting disease patterns, but climate shocks (extreme weather and climate events) and variability from sub-seasonal to decadal timeframes have a much greater influence than trends and are also more easily integrated into control programmes. In light of these conclusions, a pragmatic approach is proposed to assessing and managing the effects of climate variability and change on long-term malaria risk and on programmes to control, eliminate and ultimately eradicate the disease. A range of practical measures are proposed to climate-proof a malaria eradication strategy, which can be implemented today and will ensure that climate variability and change do not derail progress towards eradication.
Given the crucial role of climate in malaria transmission, many mechanistic models of malaria represent vector biology and the parasite lifecycle as functions of climate variables in order to accurately capture malaria transmission dynamics. Lower dimension mechanistic models that utilize implicit vector dynamics have relied on indirect climate modulation of transmission processes, which compromises investigation of the ecological role played by climate in malaria transmission. In this study, we develop an implicit process-based malaria model with direct climate-mediated modulation of transmission pressure borne through the Entomological Inoculation Rate (EIR). The EIR, a measure of the number of infectious bites per person per unit time, includes the effects of vector dynamics, resulting from mosquito development, survivorship, feeding activity and parasite development, all of which are moderated by climate. We combine this EIR-model framework, which is driven by rainfall and temperature, with Bayesian inference methods, and evaluate the model’s ability to simulate local transmission across 42 regions in Rwanda over four years. Our findings indicate that the biologically-motivated, EIR-model framework is capable of accurately simulating seasonal malaria dynamics and capturing of some of the inter-annual variation in malaria incidence. However, the model unsurprisingly failed to reproduce large declines in malaria transmission during 2018 and 2019 due to elevated anti-malaria measures, which were not accounted for in the model structure. The climate-driven transmission model also captured regional variation in malaria incidence across Rwanda’s diverse climate, while identifying key entomological and epidemiological parameters important to seasonal malaria dynamics. In general, this new model construct advances the capabilities of implicitly-forced lower dimension dynamical malaria models by leveraging climate drivers of malaria ecology and transmission.
BackgroundThe emergence of West Nile virus (WNV) in the Western Hemisphere has motivated research into the processes contributing to the incidence and persistence of the disease in the region. Meteorology and hydrology are fundamental determinants of vector-borne disease transmission dynamics of a region. The availability of water influences the population dynamics of vector and host, while temperature impacts vector growth rates, feeding habits, and disease transmission potential. Characterization of the temporal pattern of environmental factors influencing WNV risk is crucial to broaden our understanding of local transmission dynamics and to inform efforts of control and surveillance.MethodsWe used hydrologic, meteorological and WNV data from west Texas (2002–2016) to analyze the relationship between environmental conditions and annual human WNV infection. A Bayesian model averaging framework was used to evaluate the association of monthly environmental conditions with WNV infection.ResultsFindings indicate that wet conditions in the spring combined with dry and cool conditions in the summer are associated with increased annual WNV cases. Bayesian multi-model inference reveals monthly means of soil moisture, specific humidity and temperature to be the most important variables among predictors tested. Environmental conditions in March, June, July and August were the leading predictors in the best-fitting models.ConclusionsThe results significantly link soil moisture and temperature in the spring and summer to WNV transmission risk. Wet spring in association with dry and cool summer was the temporal pattern best-describing WNV, regardless of year. Our findings also highlight that soil moisture may be a stronger predictor of annual WNV transmission than rainfall.
An amendment to this paper has been published and can be accessed via the original article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.