Nowadays, high strength steels are getting very popular all over the world for various applications such as in auto body making, machine parts manufacturing, steel structure buildings, concrete reinforcement, etc. In Bangladesh, use of high strength TMT steels bars has got a momentum in the construction of flyovers, bridges and high rise buildings because of its good combination of the required mechanical properties. In this research work, locally produced high strength TMT reinforcing steel bars (20 mm dia.) of two different companies have been investigated. As a part of this research work, at first, details microstructural morphologies of hardened case, transition zone and core of both steels were investigated by optical microscope and they were then photographed. After that, Rockwell hardness was measured on different zones. Tensile tests were also carried by a Universal Testing Machine at room temperature. After tensile tests, details of the fracture modes of the steel bars were studied carefully. The fracture modes were then discussed in terms of chemical compositions and carbon equivalents, resulted microstructures, case and core hardness, depths of hardened case and transition zone of the steel bars.
Laser cladding is one of the advanced thermal techniques used to repair or modify the surface properties of high-value components such as tools, military and aerospace parts. Unfortunately, tensile residual stresses are generated in the thermally treated area of this process. This work focuses on to investigate the key factors for the formation of tensile residual stress and how to minimize it in the clad when using dissimilar substrate and clad materials. To predict the tensile residual stress, a onedimensional analytical model has been adopted. Four cladding materials (Al 2 O 3 , TiC, TiO 2 , ZrO 2 ) on the H13 tool steel substrate and a range of preheating temperatures of the substrate, from 300 to 1200 K, have been investigated. Thermal strain and Young's modulus are found to be the key factors of formation of tensile residual stresses. Additionally, it is found that using a preheating temperature of the substrate immediately before laser cladding showed the reduction of residual stress.
A two-dimensional thermomechanical finite element (FE) model of laser surface glazing (LSG) has been developed for H13 tool steel. The direct coupling technique of ANSYS 17.2 (APDL) has been utilised to solve the transient thermomechanical process. A H13 tool steel cylindrical cross-section has been modelled for laser power 200 W and 300 W at constant 0.2 mm beam width and 0.15 ms residence time. The model can predict temperature distribution, stress-strain increments in elastic and plastic region with time and space. The crack formation tendency also can be assumed by analysing the von Mises stress in the heat-concentrated zone. Isotropic and kinematic hardening models have been applied separately to predict the after-yield phenomena. At 200 W laser power, the peak surface temperature achieved is 1520 K which is below the melting point (1727 K) of H13 tool steel. For laser power 300 W, the peak surface temperature is 2523 K. Tensile residual stresses on surface have been found after cooling, which are in agreement with literature. Isotropic model shows higher residual stress that increases with laser power. Conversely, kinematic model gives lower residual stress which decreases with laser power. Therefore, both plasticity models could work in LSG for H13 tool steel.
A two dimensional (2D) transient thermal model with line-heat-source was developed by Finite Element Method (FEM) for laser surface glazing of H13 tool steel using commercial software-ANSYS 15. The geometry of the model was taken as a transverse circular cross-section of cylindrical specimen. Two different power levels (300W, 200W) were used with 0.2mm width of laser beam and 0.15ms exposure time. Temperature distribution, heating and cooling rates, and the dimensions of modified surface were analysed. The maximum temperatures achieved were 2532K (2259°C) and 1592K (1319°C) for laser power 300W and 200W respectively. The maximum cooling rates were 4.2×10 7 K/s for 300W and 2×10 7 K/s for 200W. Depths of modified zone increased with increasing laser power. From this analysis, it can be predicted that for 0.2mm beam width and 0.15ms time exposer melting temperature of H13 tool steel is achieved within 200-300W power range of laser beam in laser surface glazing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.