Most cancer deaths arise from metastases as a result of circulating tumor cells (CTCs) spreading from the primary tumor to vital organs. Despite progress in cancer prognosis, the role of CTCs in early disease diagnosis is unclear because of the low sensitivity of CTC assays. We demonstrate the high sensitivity of the Cytophone technology using an in vivo photoacoustic flow cytometry platform with a high pulse rate laser and focused ultrasound transducers for label-free detection of melanin-bearing CTCs in patients with melanoma. The transcutaneous delivery of laser pulses via intact skin to a blood vessel results in the generation of acoustic waves from CTCs, which are amplified by vapor nanobubbles around intrinsic melanin nanoclusters. The time-resolved detection of acoustic waves using fast signal processing algorithms makes photoacoustic data tolerant to skin pigmentation and motion. No CTC-associated signals within established thresholds were identified in 19 healthy volunteers, but 27 of 28 patients with melanoma displayed signals consistent with single, clustered, and likely rolling CTCs. The detection limit ranged down to 1 CTC/liter of blood, which is ~1000 times better than in preexisting assays. The Cytophone could detect individual CTCs at a concentration of ≥1 CTC/ml in 20 s and could also identify clots and CTC-clot emboli. The in vivo results were verified with six ex vivo methods. These data suggest the potential of in vivo blood testing with the Cytophone for early melanoma screening, assessment of disease recurrence, and monitoring of the physical destruction of CTCs through real-time CTC counting.
Cancer development is a multi-step process driven by genetic alterations that elicit the progressive transformation of normal human cells into highly malignant derivatives. The altered cell proliferation phenotype of cancer involves a poorly characterized sequence of molecular events, which often result in the development of distant metastasis. In the case of breast cancer, the skeleton is among the most common of metastatic sites. In spite of its clinical importance, the underlying cellular and molecular mechanisms driving bone metastasis remain elusive. Despite advances in our understanding of the phenotype of cancer cells, the increased focus on the contribution of the tumor microenvironment and the recent revival of interest in the role of tumorpropagating cells (so called cancer stem cells) that may originate or be related to normal stem cells produced in the bone marrow, many important questions remain unanswered. As such, a more complete understanding of the influences of both the microenvironment and the tumor phenotype, which impact the entire multi-step metastatic cascade, is required. In this review, the importance of tumor heterogeneity, tumor-propagating cells, the microenvironment of breast cancer metastasis to bone as well as many current endocrine therapies for the prevention and treatment of metastatic breast cancer is discussed.
Cardiotoxicity of doxorubicin (DOX) remains an important health concern. DOX cardiotoxicity is cumulative-dose-dependent and begins with the first dose of chemotherapy. No biomarker for presymptomatic detection of DOX cardiotoxicity has been validated. Our hypothesis is that peripheral blood cells (PBC) gene expression induced by the early doses of DOX-based chemotherapy could identify potential biomarkers for presymptomatic cardiotoxicity in cancer patients. PBC gene expression of 33 breast cancer patients was conducted before and after the first cycle of DOX-based chemotherapy. Cardiac function was evaluated before the start of chemotherapy and at its completion. Differentially expressed genes (DEG) of patients who developed DOX-associated cardiotoxicity after the completion of chemotherapy were compared with DEG of patients who did not. Ingenuity database was used for functional analysis of DEG. Sixty-sevens DEG (P<0.05) were identified in PBC of patients with DOX-cardiotoxicity. Most of DEG encode proteins secreted by activated neutrophils. The functional analysis of the DEG showed enrichment for immune- and inflammatory response. This is the first study to identify the PBC transcriptome signature associated with a single dose of DOX-based chemotherapy in cancer patients. We have shown that PBC transcriptome signature associated with one dose of DOX chemotherapy in breast cancer can predict later impairment of cardiac function. This finding may be of value in identifying patients at high or low risk for the development of DOX cardiotoxicity during the initial doses of chemotherapy and thus to avoid the accumulating toxic effects from the subsequent doses during treatment.
Breast cancer is a heterogeneous disease, and the different biological subtypes have different prognostic impacts. Neoadjuvant trials have recently become popular as they offer several advantages compared to traditional adjuvant trials. Studies have shown that patients who achieve pathological complete response (pCR) after neoadjuvant treatment have a better long-term outcome. Consequently, increasing the rate of pCR became the end point of neoadjuvant trials with the expectation of translation into improved survival. However, the definition of pCR has lacked uniformity, and the prognostic impact of achievement of pCR on survival in different breast cancer subtypes is uncertain. In this review, we present the controversies associated with the use of pCR as an end point in neoadjuvant trials.
Findings highlight areas that patients themselves regard as critical for a sense of preparedness for EOL care. Participants emphasized broader concerns than those previously construed as facets of patient preparedness, and these domains offer modifiable targets for intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.