The role of adjuvant on the T(h)1 and T(h)2 immune responses to Abeta-immunotherapy (Abeta(42 )peptide) was examined in wild-type mice. Fine epitope analysis with overlapping oligomers of the Abeta(42) sequence identified the 1-15 region as a dominant B cell epitope. The 6-20 peptide was recognized only weakly by antisera from mice administrated with Abeta(42) peptide formulated in complete Freund's adjuvant (CFA), alum or TiterMax Gold (TMG). However, mice immunized with Abeta(42) mixed with QS21 induced a significant antibody response to the 6-20 peptide. The only T cell epitope found was within the 6-28 sequence of Abeta(42). QS21 and CFA induced the strongest humoral response to Abeta, alum was intermediate, and TMG the weakest adjuvant. Analysis of antibody isotypes specific for Abeta indicates that alum induces primarily T(h)2-type immune response, whereas TMG, CFA and QS21 shift the immune responses toward a T(h)1 phenotype. Stimulation of splenocytes from Abeta-immunized mice with Abeta(40) peptide induced strikingly different cytokine expression profiles. QS21 and CFA induced significant IFN-gamma, IL-4 and tumor necrosis factor-alpha expression, whereas alum induced primarily IL-4 production. As T(h)1-type immune responses have been implicated in many autoimmune disorders, whereas T(h)2-type responses have been shown to inhibit autoimmune disease, the choice of adjuvant may be critical for the design of a safe and effective immunotherapy for Alzheimer's disease.
IntroductionWe have previously demonstrated that chondroitin sulfate glycosaminoglycans (CS-GAGs) on breast cancer cells function as P-selectin ligands. This study was performed to identify the carrier proteoglycan (PG) and the sulfotransferase gene involved in synthesis of the surface P-selectin-reactive CS-GAGs in human breast cancer cells with high metastatic capacity, as well as to determine a direct role for CS-GAGs in metastatic spread.MethodsQuantitative real-time PCR (qRT-PCR) and flow cytometry assays were used to detect the expression of genes involved in the sulfation and presentation of chondroitin in several human breast cancer cell lines. Transient transfection of the human breast cancer cell line MDA-MB-231 with the siRNAs for carbohydrate (chondroitin 4) sulfotransferase-11 (CHST11) and chondroitin sulfate proteoglycan 4 (CSPG4 ) was used to investigate the involvement of these genes in expression of surface P-selectin ligands. The expression of CSPG4 and CHST11 in 15 primary invasive breast cancer clinical specimens was assessed by qRT-PCR. The role of CS-GAGs in metastasis was tested using the 4T1 murine mammary cell line (10 mice per group).ResultsThe CHST11 gene was highly expressed in aggressive breast cancer cells but significantly less so in less aggressive breast cancer cell lines. A positive correlation was observed between the expression levels of CHST11 and P-selectin binding to cells (P < 0.0001). Blocking the expression of CHST11 with siRNA inhibited CS-A expression and P-selectin binding to MDA-MB-231 cells. The carrier proteoglycan CSPG4 was highly expressed on the aggressive breast cancer cell lines and contributed to the P-selectin binding and CS-A expression. In addition, CSPG4 and CHST11 were over-expressed in tumor-containing clinical tissue specimens compared with normal tissues. Enzymatic removal of tumor-cell surface CS-GAGs significantly inhibited lung colonization of the 4T1 murine mammary cell line (P = 0.0002).ConclusionsCell surface P-selectin binding depends on CHST11 gene expression. CSPG4 serves as a P-selectin ligand through its CS chain and participates in P-selectin binding to the highly metastatic breast cancer cells. Removal of CS-GAGs greatly reduces metastatic lung colonization by 4T1 cells. The data strongly indicate that CS-GAGs and their biosynthetic pathways are promising targets for the development of anti-metastatic therapies.
Tumor-associated carbohydrate (TAC) antigens are important targets in cancer vaccine efforts.Carbohydrates are, however, frequently poor immunogens, in that they are T-cell-independent antigens. Molecular mimicry of TAC by peptides is an alternative approach to generating anti-carbohydrate immune responses. Here we demonstrate that peptide mimotopes can elicit antibody responses that cross-react with representative human TAC antigens. Primary immunization with such a multiple antigenic peptide, along with QS-21 as adjuvant, elicits cytotoxic antibodies reactive with naturally occurring forms of TAC expressed on tumor cells, and vaccination of mice with peptide mimotopes reduced tumor growth and prolonged host survival in a murine tumor model.
The vpr gene product of human immunodeficiency virus type 1 (HIV-1) is a virion-associated protein that is essential for efficient viral replication in monocytes/macrophages. Vpr is primarily localized in the nucleus when expressed in the absence of other viral proteins. Vpr is packaged efficiently into viral particles through interactions with the p6 domain of the Gag precursor polyprotein p55 gag. We developed a panel of expression vectors encoding Vpr molecules mutated in the amino-terminal helical domain, leucine-isoleucine (LR) domain, and carboxy-terminal domain to map the different functional domains and to define the interrelationships between virion incorporation, nuclear localization, cell cycle arrest, and differentiation functions of Vpr. We observed that substitution mutations in the N-terminal domain of Vpr impaired both nuclear localization and virion packaging, suggesting that the helical structure may play a vital role in modulating both of these biological properties. The LR domain was found to be involved in the nuclear localization of Vpr. In contrast, cell cycle arrest appears to be largely controlled by the C-terminal domain of Vpr. The LR and C-terminal domains do not appear to be essential for virion incorporation of Vpr. Interestingly, we found that two Vpr mutants harboring single amino acid substitutions (A30L and G75A) retained the ability to translocate to the nucleus but were impaired in the cell cycle arrest function. In contrast, mutation of Leu68 to Ser resulted in a protein that localizes in the cytoplasm while retaining the ability to arrest host cell proliferation. We speculate that the nuclear localization and cell cycle arrest functions of Vpr are not interrelated and that these functions are mediated by separable putative functional domains of Vpr.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.