All living tissues and cells on Earth are subject to gravitational acceleration, but no reports have verified whether acceleration mode influences bone formation and healing. Therefore, this study was to compare the effects of two acceleration modes, vibration and constant (centrifugal) accelerations, on bone formation and healing in the trunk using BMP 2-induced ectopic bone formation (EBF) mouse model and a rib fracture healing (RFH) rat model. Additionally, we tried to verify the difference in mechanism of effect on bone formation by accelerations between these two models. Three groups (low- and high-magnitude vibration and control-VA groups) were evaluated in the vibration acceleration study, and two groups (centrifuge acceleration and control-CA groups) were used in the constant acceleration study. In each model, the intervention was applied for ten minutes per day from three days after surgery for eleven days (EBF model) or nine days (RFH model). All animals were sacrificed the day after the intervention ended. In the EBF model, ectopic bone was evaluated by macroscopic and histological observations, wet weight, radiography and microfocus computed tomography (micro-CT). In the RFH model, whole fracture-repaired ribs were excised with removal of soft tissue, and evaluated radiologically and histologically. Ectopic bones in the low-magnitude group (EBF model) had significantly greater wet weight and were significantly larger (macroscopically and radiographically) than those in the other two groups, whereas the size and wet weight of ectopic bones in the centrifuge acceleration group showed no significant difference compared those in control-CA group. All ectopic bones showed calcified trabeculae and maturated bone marrow. Micro-CT showed that bone volume (BV) in the low-magnitude group of EBF model was significantly higher than those in the other two groups (3.1±1.2mm3 v.s. 1.8±1.2mm3 in high-magnitude group and 1.3±0.9mm3 in control-VA group), but BV in the centrifuge acceleration group had no significant difference compared those in control-CA group. Union rate and BV in the low-magnitude group of RFH model were also significantly higher than those in the other groups (Union rate: 60% v.s. 0% in the high-magnitude group and 10% in the control-VA group, BV: 0.69±0.30mm3 v.s. 0.15±0.09mm3 in high-magnitude group and 0.22±0.17mm3 in control-VA group). BV/TV in the low-magnitude group of RFH model was significantly higher than that in control-VA group (59.4±14.9% v.s. 35.8±13.5%). On the other hand, radiographic union rate (10% in centrifuge acceleration group v.s. 20% in control-CA group) and micro-CT parameters in RFH model were not significantly different between two groups in the constant acceleration studies. Radiographic images of non-union rib fractures showed cartilage at the fracture site and poor new bone formation, whereas union samples showed only new bone. In conclusion, low-magnitude vibration acceleration promoted bone formation at the trunk in both BMP-induced ectopic bone formation and rib frac...
Purpose The inside-out meniscal repair is widely performed to preserve the function of meniscus. In this technique, the outer suture is passed through the capsule as well as the outer meniscus, while the inner suture is inserted into the meniscus. The aim of this study was to biomechanically compare the suture stability between meniscus-meniscus and meniscus-capsule suture methods for the longitudinal meniscal tear with inside-out technique. Methods Twenty-seven porcine knees were dissected to maintain the femur-medial capsule/meniscus-tibia complex, and the inner meniscus was cut off along the meniscus circumferential fiber with 3 mm width of the peripheral meniscus preserved. After one needle with a 2-0 polyester suture was inserted into the inner portion of the meniscus, the other needle was inserted through 1) the peripheral meniscus (Group A), 2) capsule just above the meniscus (Group B), and 3) capsule at 10 mm apart from the meniscus-capsule junction (Group C) in the inside-out manner. Then, the suture was manually tied on the capsule. The suture gap at the repair site during 300 times of cyclic loading and the ultimate failure load in the load-to-failure test were measured. The statistical significance of the data between two groups in each combination was considered by Bonferroni correction, following a one-way analysis of variance. Results In the cyclic loading test, the suture gap was 0.68 ± 0.26 mm in Group A, 1.08 ± 0.36 mm in Group B, and 1.94 ± 0.57 mm in Group C with a significant difference. In the load-to-failure test, the ultimate failure load was 59.1 ± 13.6 N in Group A, 60.0 ± 7.9 N in Group B, and 57.4 ± 4.7 N in Group C, and there was no significant difference. Conclusion The stitching region in the inside-out technique for longitudinal meniscal tear affected the stability of the tear site, and stitching the mid-substance region of the meniscus provides good stability in response to cyclic tensile loading. In addition, the stitching region did not affect the ultimate failure load. Clinical relevance In the inside-out meniscal repair, the outer suture should be inserted into the remaining peripheral meniscus or the capsule near the meniscus.
Sportswear-type wearables with integrated inertial sensors and electrocardiogram (ECG) electrodes have been commercially developed. We evaluated the feasibility of using a sportswear-type wearable with integrated inertial sensors and electrocardiogram (ECG) electrodes for evaluating exercise intensity within a controlled laboratory setting. Six male college athletes were asked to wear a sportswear-type wearable while performing a treadmill test that reached up to 20 km/h. The magnitude of the filtered tri-axial acceleration signal, recorded by the inertial sensor, was used to calculate the acceleration index. The R-R intervals of the ECG were used to determine heart rate; the external validity of the heart rate was then evaluated according to oxygen uptake, which is the gold standard for physiological exercise intensity. Single regression analysis between treadmill speed and the acceleration index in each participant showed that the slope of the regression line was significantly greater than zero with a high coefficient of determination (walking, 0.95; jogging, 0.96; running, 0.90). Another single regression analysis between heart rate and oxygen uptake showed that the slope of the regression line was significantly greater than zero, with a high coefficient of determination (0.96). Together, these results indicate that the sportswear-type wearable evaluated in this study is a feasible technology for evaluating physical and physiological exercise intensity across a wide range of physical activities and sport performances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.