Accessing and analyzing the exponentially expanding genomic sequence and functional data pose a challenge for biomedical researchers. Here we describe an interactive system, Galaxy, that combines the power of existing genome annotation databases with a simple Web portal to enable users to search remote resources, combine data from independent queries, and visualize the results. The heart of Galaxy is a flexible history system that stores the queries from each user; performs operations such as intersections, unions, and subtractions; and links to other computational tools. Galaxy can be accessed at http://g2.bx.psu.edu.
Most nucleosomes are well-organized at the 5Ј ends of S. cerevisiae genes where "−1" and "+1" nucleosomes bracket a nucleosome-free promoter region (NFR). How nucleosomal organization is specified by the genome is less clear. Here we establish and inter-relate rules governing genomic nucleosome organization by sequencing DNA from more than one million immunopurified S. cerevisiae nucleosomes (displayed at http://atlas.bx.psu.edu/). Evidence is presented that the organization of nucleosomes throughout genes is largely a consequence of statistical packing principles. The genomic sequence specifies the location of the −1 and +1 nucleosomes. The +1 nucleosome forms a barrier against which nucleosomes are packed, resulting in uniform positioning, which decays at farther distances from the barrier. We present evidence for a novel 3Ј NFR that is present at >95% of all genes. 3Ј NFRs may be important for transcription termination and anti-sense initiation. We present a high-resolution genome-wide map of TFIIB locations that implicates 3Ј NFRs in gene looping.
The magnitude of the August 2003 blackout affecting the United States has put the challenges of energy transmission and distribution into limelight. Despite all the interest and concerted effort, the complexity and interconnectivity of the electric infrastructure have so far precluded us from understanding why certain events happened. In this paper we study the power grid from a network perspective and determine its ability to transfer power between generators and consumers when certain nodes are disrupted. We find that the power grid is robust to most perturbations, yet disturbances affecting key transmision substations greatly reduce its ability to function. We emphasize that the global properties of the underlying network must be understood as they greatly affect local behavior.
The nucleosome is the fundamental building block of eukaryotic chromosomes. Access to genetic information encoded in chromosomes is dependent on the position of nucleosomes along the DNA. Alternative locations just a few nucleotides apart can have profound effects on gene expression. Yet the nucleosomal context in which chromosomal and gene regulatory elements reside remains ill-defined on a genomic scale. Here we sequence the DNA of 322,000 individual Saccharomyces cerevisiae nucleosomes, containing the histone variant H2A.Z, to provide a comprehensive map of H2A.Z nucleosomes in functionally important regions. With a median 4-base-pair resolution, we identify new and established signatures of nucleosome positioning. A single predominant rotational setting and multiple translational settings are evident. Chromosomal elements, ranging from telomeres to centromeres and transcriptional units, are found to possess characteristic nucleosomal architecture that may be important for their function. Promoter regulatory elements, including transcription factor binding sites and transcriptional start sites, show topological relationships with nucleosomes, such that transcription factor binding sites tend to be rotationally exposed on the nucleosome surface near its border. Transcriptional start sites tended to reside about one helical turn inside the nucleosome border. These findings reveal an intimate relationship between chromatin architecture and the underlying DNA sequence it regulates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.