Abstract. State-of-the-art carbon cycle prediction systems are initialized from reconstruction simulations in which state variables of the climate system are assimilated. While currently only the physical state variables are assimilated, biogeochemical state variables adjust to the state acquired through this assimilation indirectly instead of being assimilated themselves. In the absence of comprehensive biogeochemical reanalysis products, such approach is pragmatic. Here we evaluate a potential advantage of having perfect carbon cycle observational products to be used for direct carbon cycle reconstruction. Within an idealized perfect-model framework, we define 50 years of a control simulation under pre-industrial CO2 levels as our target representing observations. We nudge variables from this target onto arbitrary initial conditions 150 years later mimicking an assimilation simulation generating initial conditions for hindcast experiments of prediction systems. We investigate the tracking performance, i.e. bias, correlation and root-mean-square-error between the reconstruction and the target, when nudging an increasing set of atmospheric, oceanic and terrestrial variables with a focus on the global carbon cycle explaining variations in atmospheric CO2. We compare indirect versus direct carbon cycle reconstruction against a resampled threshold representing internal variability. Afterwards, we use these reconstructions to initialize ensembles to assess how well the target can be predicted after reconstruction. Interested in the ability to reconstruct global atmospheric CO2, we focus on the global carbon cycle reconstruction and predictive skill. We find that indirect carbon cycle reconstruction through physical fields reproduces the target variations on a global and regional scale much better than the resampled threshold. While reproducing the large scale variations, nudging introduces systematic regional biases in the physical state variables, on which biogeochemical cycles react very sensitively. Global annual surface oceanic pCO2 initial conditions are indirectly reconstructed with an anomaly correlation coefficient (ACC) of 0.8 and debiased root mean square error (RMSE) of 0.3 ppm. Direct reconstruction slightly improves initial conditions in ACC by +0.1 and debiased RMSE by −0.1 ppm. Indirect reconstruction of global terrestrial carbon cycle initial conditions for vegetation carbon pools track the target by ACC of 0.5 and debiased RMSE of 0.5 PgC. Direct reconstruction brings negligible improvements for air-land CO2 flux. Global atmospheric CO2 is indirectly tracked by ACC of 0.8 and debiased RMSE of 0.4 ppm. Direct reconstruction of the marine and terrestrial carbon cycles improves ACC by 0.1 and debiased RMSE by −0.1 ppm. We find improvements in global carbon cycle predictive skill from direct reconstruction compared to indirect reconstruction. After correcting for mean bias, indirect and direct reconstruction both predict the target similarly well and only moderately worse than perfect initialization after the first lead year. Our perfect-model study shows that indirect carbon cycle reconstruction yields satisfying initial conditions for global CO2 flux and atmospheric CO2. Direct carbon cycle reconstruction adds little improvements in the global carbon cycle, because imperfect reconstruction of the physical climate state impedes better biogeochemical reconstruction. These minor improvements in initial conditions yield little improvement in initialized perfect-model predictive skill. We label these minor improvements due to direct carbon cycle reconstruction trivial, as mean bias reduction yields similar improvements. As reconstruction biases in real-world prediction systems are even stronger, our results add confidence to the current practice of indirect reconstruction in carbon cycle prediction systems.
Abstract. Despite efforts to decrease the discrepancy between simulated and observed terrestrial carbon fluxes, the uncertainty in trends and patterns of the land carbon fluxes remains high. This difficulty raises the question to what extent the terrestrial carbon cycle is predictable, and which processes explain the predictability. Here, the perfect model approach is used to assess the potential predictability of net primary production (NPPpred) and heterotrophic respiration (Rhpred) by using ensemble simulations conducted with the Max-Planck-Institute Earth System Model. In order to asses the role of local carbon flux predictability (CFpred) on the predictability of the global carbon cycle, we suggest a new predictability metric weighted by the amplitude of the flux anomalies. Regression analysis is used to determine the contribution of the predictability of different environmental drivers to NPPpred and Rhpred (soil moisture, air temperature and radiation for NPP and soil organic carbon, air temperature and precipitation for Rh). NPPpred is driven to 62 and 30 % by the predictability of soil moisture and temperature, respectively. Rhpred is driven to 52 and 27 % by the predictability of soil organic carbon temperature, respectively. The decomposition of predictability shows that the relatively high Rhpred compared to NPPpred is due to the generally high predictability of soil organic carbon. The seasonality in NPPpred and Rhpred patterns can be explained by the change in limiting factors over the wet and dry months. Consequently, CFpred is controlled by the predictability of the currently limiting environmental factor. Differences in CFpred between ensemble simulations can be attributed to the occurrence of wet and dry years, which influences the predictability of soil moisture and temperature. This variability of predictability is caused by the state dependency of ecosystem processes. Our results reveal the crucial regions and ecosystem processes to be considered when initializing a carbon prediction system.
Abstract. Despite efforts to decrease the discrepancy between simulated and observed terrestrial carbon fluxes, the uncertainty in trends and patterns of the land carbon fluxes remains high. This difficulty raises the question of the extent to which the terrestrial carbon cycle is predictable and which processes explain the predictability. Here, the perfect model approach is used to assess the potential predictability of net primary production (NPPpred) and heterotrophic respiration (Rhpred) by using ensemble simulations conducted with the Max Planck Institute Earth system model. In order to assess the role of local carbon flux predictability (CFpred) in the predictability of the global carbon cycle, we suggest a new predictability metric weighted by the amplitude of the flux anomalies. Regression analysis is used to determine the contribution of the predictability of different environmental drivers to NPPpred and Rhpred (soil moisture, air temperature, and radiation for NPP, and soil organic carbon, air temperature, and precipitation for Rh). Global NPPpred is driven to 62 % and 30 % by the predictability of soil moisture and temperature, respectively. Global Rhpred is driven to 52 % and 27 % by the predictability of soil organic carbon and temperature, respectively. The decomposition of predictability shows that the relatively high Rhpred compared to NPPpred is due to the generally high predictability of soil organic carbon. The seasonality in NPPpred and Rhpred patterns can be explained by the change in limiting factors over the wet and dry months. Consequently, CFpred is controlled by the predictability of the currently limiting environmental factor. Differences in CFpred between ensemble simulations can be attributed to the occurrence of wet and dry years, which influences the predictability of soil moisture and temperature. This variability of predictability is caused by the state dependency of ecosystem processes. Our results reveal the crucial regions and ecosystem processes to be considered when initializing a carbon prediction system.
Abstract. State-of-the art climate prediction systems have recently included a carbon component. While physical-state variables are assimilated in reconstruction simulations, land and ocean biogeochemical state variables adjust to the state acquired through this assimilation indirectly instead of being assimilated themselves. In the absence of comprehensive biogeochemical reanalysis products, such an approach is pragmatic. Here we evaluate a potential advantage of having perfect carbon cycle observational products to be used for direct carbon cycle reconstruction. Within an idealized perfect-model framework, we reconstruct a 50-year target period from a control simulation. We nudge variables from this target onto arbitrary initial conditions, mimicking an assimilation simulation generating initial conditions for hindcast experiments of prediction systems. Interested in the ability to reconstruct global atmospheric CO2, we focus on the global carbon cycle reconstruction performance and predictive skill. We find that indirect carbon cycle reconstruction through physical fields reproduces the target variations. While reproducing the large-scale variations, nudging introduces systematic regional biases in the physical-state variables to which biogeochemical cycles react very sensitively. Initial conditions in the oceanic carbon cycle are sufficiently well reconstructed indirectly. Direct reconstruction slightly improves initial conditions. Indirect reconstruction of global terrestrial carbon cycle initial conditions are also sufficiently well reconstructed by the physics reconstruction alone. Direct reconstruction negligibly improves air–land CO2 flux. Atmospheric CO2 is indirectly very well reconstructed. Direct reconstruction of the marine and terrestrial carbon cycles slightly improves reconstruction while establishing persistent biases. We find improvements in global carbon cycle predictive skill from direct reconstruction compared to indirect reconstruction. After correcting for mean bias, indirect and direct reconstruction both predict the target similarly well and only moderately worse than perfect initialization after the first lead year. Our perfect-model study shows that indirect carbon cycle reconstruction yields satisfying initial conditions for global CO2 flux and atmospheric CO2. Direct carbon cycle reconstruction adds little improvement to the global carbon cycle because imperfect reconstruction of the physical climate state impedes better biogeochemical reconstruction. These minor improvements in initial conditions yield little improvement in initialized perfect-model predictive skill. We label these minor improvements due to direct carbon cycle reconstruction “trivial”, as mean bias reduction yields similar improvements. As reconstruction biases in real-world prediction systems are likely stronger, our results add confidence to the current practice of indirect reconstruction in carbon cycle prediction systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.