Ocean biogeochemistry is a novel standard component of fifth phase of the Coupled Model Intercomparison Project (CMIP5) experiments which project future climate change caused by anthropogenic emissions of greenhouse gases. Of particular interest here is the evolution of the oceanic sink of carbon and the oceanic contribution to the climate‐carbon cycle feedback loop. The Hamburg ocean carbon cycle model (HAMOCC), a component of the Max Planck Institute for Meteorology Earth system model (MPI‐ESM), is employed to address these challenges. In this paper we describe the version of HAMOCC used in the CMIP5 experiments (HAMOCC 5.2) and its implementation in the MPI‐ESM to provide a documentation and basis for future CMIP5‐related studies. Modeled present day distributions of biogeochemical variables calculated in two different horizontal resolutions compare fairly well with observations. Statistical metrics indicate that the model performs better at the ocean surface and worse in the ocean interior. There is a tendency for improvements in the higher resolution model configuration in representing deeper ocean variables; however, there is little to no improvement at the ocean surface. An experiment with interactive carbon cycle driven by emissions of CO2 produces a 25% higher variability in the oceanic carbon uptake over the historical period than the same model forced by prescribed atmospheric CO2 concentrations. Furthermore, a climate warming of 3.5 K projected at atmospheric CO2 concentration of four times the preindustrial value, reduced the atmosphere‐ocean CO2 flux by 1 GtC yr−1. Overall, the model shows consistent results in different configurations, being suitable for the type of simulations required within the CMIP5 experimental design.
The East Asian summer monsoon (EASM) circulation and summer rainfall over East China have experienced large decadal changes during the latter half of the 20th century. To investigate the potential causes behind these changes, a series of simulations using the national center for atmospheric research (NCAR) community atmospheric model version 3 (CAM3) and the geophysical fluid dynamics laboratory (GFDL) atmospheric model version 2.1 (AM2.1) are analyzed. These simulations are forced separately with different historical forcing, namely tropical sea surface temperature (SSTs), global SSTs, greenhouse gases plus aerosols, and a combination of global SSTs and greenhouse gases plus aerosols. This study focuses on the relative roles of these individual forcings in causing the observed monsoon and rainfall changes over East Asia during 1950-2000. The simulations from both models show that the SST forcing, primarily from the Tropics, is able to induce most of the observed weakening of the EASM circulation, while the greenhouse gas plus (direct) aerosol forcing increases the land-sea thermal contrast and thus enhances the EASM circulation. The results suggest that the recent warming in the Tropics, especially the warming associated with the tropical interdecadal variability centered over the central and eastern Pacific, is a primary cause for the weakening of the EASM since the late 1970s. However, a realistic simulation of the relatively small-scale rainfall change pattern over East China remains a challenge for the global models.
Phospholipid bilayers that constitute endo-lysosomal vesicles can pose a barrier to delivery of biologic drugs to intracellular targets. To overcome this barrier, a number of synthetic drug carriers have been engineered to actively disrupt the endosomal membrane and deliver cargo into the cytoplasm. Here, we describe the hemolysis assay, which can be used as rapid, high-throughput screen for the cytocompatibility and endosomolytic activity of intracellular drug delivery systems.In the hemolysis assay, human red blood cells and test materials are co-incubated in buffers at defined pHs that mimic extracellular, early endosomal, and late endo-lysosomal environments. Following a centrifugation step to pellet intact red blood cells, the amount of hemoglobin released into the medium is spectrophotometrically measured (405 nm for best dynamic range). The percent red blood cell disruption is then quantified relative to positive control samples lysed with a detergent. In this model system the erythrocyte membrane serves as a surrogate for the lipid bilayer membrane that enclose endo-lysosomal vesicles. The desired result is negligible hemolysis at physiologic pH (7.4) and robust hemolysis in the endo-lysosomal pH range from approximately pH 5-6.8. Video LinkThe video component of this article can be found at
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.