Point-like motile topological defects control the universal dynamics of diverse twodimensional active nematics ranging from shaken granular rods to cellular monolayers. A comparable understanding in higher dimensions has yet to emerge. We report the creation of three-dimensional active nematics by dispersing extensile microtubule bundles in a passive colloidal liquid crystal. Light-sheet microscopy reveals the millimeter-scale structure of active nematics with a single bundle resolution and the temporal evolution of the associated nematic director field. The dominant excitations of three-dimensional active nematics are extended charge-neutral disclination loops that undergo complex dynamics and recombination events. These studies introduce a distinct class of non-equilibrium systems whose turbulent-like dynamics arises from the interplay between internally generated active stresses, the chaotic flows and the topological structure of the constituent defects.
Cracks develop intricate patterns on the surfaces that they create. As faceted fracture surfaces are commonly formed by slow tensile cracks in both crystalline and amorphous materials, facet formation and structure cannot reflect microscopic order. Although fracture mechanics predict that slow crack fronts should be straight and form mirror-like surfaces, facet-forming fronts propagate simultaneously within different planes separated by steps. Here we show that these steps are topological defects of crack fronts and that crack front separation into disconnected overlapping segments provides the condition for step stability. Real-time imaging of propagating crack fronts combined with surface measurements shows that crack dynamics are governed by localized steps that drift at a constant angle to the local front propagation direction while their increased dissipation couples to long-ranged elasticity to determine front shapes. We study how three-dimensional topology couples to two-dimensional fracture dynamics to provide a fundamental picture of how patterned surfaces are generated.
Controlling interfaces of phase-separating fluid mixtures is key to the creation of diverse functional soft materials. Traditionally, this is accomplished with surface-modifying chemical agents. Using experiment and theory, we studied how mechanical activity shapes soft interfaces that separate an active and a passive fluid. Chaotic flows in the active fluid give rise to giant interfacial fluctuations and noninertial propagating active waves. At high activities, stresses disrupt interface continuity and drive droplet generation, producing an emulsion-like active state composed of finite-sized droplets. When in contact with a solid boundary, active interfaces exhibit nonequilibrium wetting transitions, in which the fluid climbs the wall against gravity. These results demonstrate the promise of mechanically driven interfaces for creating a new class of soft active matter.
We study the transition from fluid at rest to turbulence in a rotating tank. The energy is transported by inertial wave packets through the fluid volume. These high amplitude waves propagate at velocities consistent with those calculated from linearized theory [H. P. Greenspan, (Cambridge University Press, Cambridge, England, 1968)]. A "front" in the temporal evolution of the energy power spectrum indicates a time scale for energy transport at the linear wave speed. Nonlinear energy transfer between modes is governed by a different, longer, time scale. The observed mechanisms can lead to significant differences between rotating and two-dimensional turbulent flows.
When fast cracks become unstable to microscopic branching (micro-branching), fracture no longer occurs in an effective 2D medium. We follow in-plane crack front dynamics via real-time measurements in brittle gels as micro-branching unfolds and progresses. We first show that spatially local energy balance quantitatively describes crack dynamics, even when translational invariance is badly broken. Furthermore, our results explain micro-branch dynamics; why micro-branches form along spatially localized chains and how finite-time formation of cusps along the crack front leads to their death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.